Home
Class 12
MATHS
If 3x^(2)-4 sqrt((3x^(2)-4x+1))=4x-4, th...

If `3x^(2)-4 sqrt((3x^(2)-4x+1))=4x-4,` then x= ….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3x^2 - 4\sqrt{3x^2 - 4x + 1} = 4x - 4 \), we will follow these steps: ### Step 1: Isolate the square root We start by moving the square root term to the right side of the equation: \[ 3x^2 - 4 = 4x - 4\sqrt{3x^2 - 4x + 1} \] Rearranging gives: \[ 4\sqrt{3x^2 - 4x + 1} = 4x - 3x^2 + 4 \] ### Step 2: Simplify the equation Dividing both sides by 4: \[ \sqrt{3x^2 - 4x + 1} = x - \frac{3}{4} + 1 \] This simplifies to: \[ \sqrt{3x^2 - 4x + 1} = x - \frac{3}{4} \] ### Step 3: Square both sides Next, we square both sides to eliminate the square root: \[ 3x^2 - 4x + 1 = \left(x - \frac{3}{4}\right)^2 \] Expanding the right side: \[ 3x^2 - 4x + 1 = x^2 - \frac{3}{2}x + \frac{9}{16} \] ### Step 4: Rearranging the equation Now, we will bring all terms to one side of the equation: \[ 3x^2 - 4x + 1 - x^2 + \frac{3}{2}x - \frac{9}{16} = 0 \] Combining like terms: \[ (3x^2 - x^2) + (-4x + \frac{3}{2}x) + (1 - \frac{9}{16}) = 0 \] This simplifies to: \[ 2x^2 - \frac{5}{2}x + \frac{7}{16} = 0 \] ### Step 5: Clear the fraction To eliminate the fraction, multiply through by 16: \[ 32x^2 - 40x + 7 = 0 \] ### Step 6: Use the quadratic formula Now we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 32, b = -40, c = 7 \): Calculating the discriminant: \[ b^2 - 4ac = (-40)^2 - 4 \cdot 32 \cdot 7 = 1600 - 896 = 704 \] Now substituting into the quadratic formula: \[ x = \frac{40 \pm \sqrt{704}}{64} \] ### Step 7: Simplify the square root The square root of 704 can be simplified: \[ \sqrt{704} = \sqrt{16 \cdot 44} = 4\sqrt{44} = 4\sqrt{4 \cdot 11} = 8\sqrt{11} \] Thus, we have: \[ x = \frac{40 \pm 8\sqrt{11}}{64} = \frac{5 \pm \sqrt{11}}{8} \] ### Step 8: Solve for the second case Now, we also need to consider the case when \( y - 1 = 0 \): Setting \( y = 1 \): \[ 3x^2 - 4x + 1 = 1 \] This simplifies to: \[ 3x^2 - 4x = 0 \] Factoring out \( x \): \[ x(3x - 4) = 0 \] Thus, \( x = 0 \) or \( x = \frac{4}{3} \). ### Final Solutions The final solutions for \( x \) are: \[ x = 0, \quad x = \frac{4}{3}, \quad x = \frac{5 + \sqrt{11}}{8}, \quad x = \frac{5 - \sqrt{11}}{8} \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Miscellaneous Exercise (Matching Entries)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 5 (True And False)|5 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Solve (x^(3)-4x)sqrt(x^(2)-1)=0

int(dx)/(sqrt(3x^2-4x+2))=

4x^(2)+4sqrt(3)x+3=0

int(1)/(sqrt(4x^(2)-4x+3))dx=

(1)/(sqrt(3+4x-4x^(2)))

Evaluate underset( x rarr oo )("lim") ( sqrt( 3x^(2) - 1) - sqrt( 2x ^(2) - 1))/( 4x + 3)

Evaluate: int sqrt(3x^(2)+4x+1)dx

If y=sqrt(((x-3)(x^(2)+4))/((3x^(2)+4x+5))) , find (dy)/(dx) .

int_(1)^(2)(dx)/(sqrt(x^(2)+4x+3))