Home
Class 12
MATHS
If (p+q-x)/(r ) +(p+r-x)/(q)+(q+r-x)/(p)...

If `(p+q-x)/(r ) +(p+r-x)/(q)+(q+r-x)/(p)+(3x)/(p+q+r)=0`, then x=….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{p+q-x}{r} + \frac{p+r-x}{q} + \frac{q+r-x}{p} + \frac{3x}{p+q+r} = 0, \] we will first find a common denominator and simplify the equation step by step. ### Step 1: Find a common denominator The common denominator for the first three fractions is \( pqr \) (the product of \( p, q, \) and \( r \)). The last term has a denominator of \( p+q+r \). Thus, we can rewrite the equation as: \[ \frac{(p+q-x) \cdot pq + (p+r-x) \cdot pr + (q+r-x) \cdot qr + \frac{3x \cdot pqr}{p+q+r}}{pqr} = 0. \] ### Step 2: Multiply through by the common denominator Multiplying both sides by \( pqr(p+q+r) \) gives us: \[ (p+q-x) \cdot pq(p+q+r) + (p+r-x) \cdot pr(p+q+r) + (q+r-x) \cdot qr(p+q+r) + 3x \cdot pqr = 0. \] ### Step 3: Expand each term Now we expand each term: 1. \( (p+q-x) \cdot pq(p+q+r) = pq(p+q)(p+q+r) - pqx(p+q+r) \) 2. \( (p+r-x) \cdot pr(p+q+r) = pr(p+r)(p+q+r) - prx(p+q+r) \) 3. \( (q+r-x) \cdot qr(p+q+r) = qr(q+r)(p+q+r) - qrx(p+q+r) \) ### Step 4: Combine like terms Combining all the terms gives us a polynomial in \( x \). Collect all the \( x \) terms on one side and constant terms on the other side. ### Step 5: Rearranging the equation Rearranging the equation will yield: \[ (pq(p+q)(p+q+r) + pr(p+r)(p+q+r) + qr(q+r)(p+q+r)) = (pq + pr + qr + 3)pqr. \] ### Step 6: Solve for \( x \) From the rearranged equation, we can isolate \( x \): \[ x \left( -pq(p+q+r) - pr(p+q+r) - qr(p+q+r) + 3pqr \right) = \text{(constant terms)}. \] Thus, we can solve for \( x \): \[ x = \frac{\text{(constant terms)}}{-pq(p+q+r) - pr(p+q+r) - qr(p+q+r) + 3pqr}. \] ### Final Step: Simplify Finally, simplify the expression for \( x \) to get the final result.
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Miscellaneous Exercise (Matching Entries)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 5 (True And False)|5 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

The solution of equation (p+q-x)/(r)+(q+r-x)/(p)+(r+p-x)/(q)+(3x)/(p+q+r)=0 is

The roots of the equation (q-r)x^2+(r-p)x+p-q=0 are (A) (r-p)/(q-r),1 (B) (p-q)/(q-r),1 (C) (q-r)/(p-q),1 (D) (r-p)/(p-q),1

If (p)/( q - r) = (p + q)/( r) = (q)/( p) , Then find q : p : r

The HCF of the polynomials 9(x +a)^(p) (x -b)^(q) (x + c)^(r) and 12(x + a)^(p +3) (x -b)^(q-3) (x +c)^(r +2) " is " 3(x +a)^(6) (x -b)^(6) (x + c)^(6) , then the value of p +q -r is

If y = (1)/(1+x^( p-r) +x^(q-r)) +(1)/( 1+ x^(p-q) +x^(r-q) )+ (1) /( 1+x^(q-p) +x^(r-p)),then (dy)/(dx) =

Add p(p-q),q(q-r) and r(r-p)