Home
Class 12
MATHS
The solutions of the equations z+ay+a^...

The solutions of the equations
`z+ay+a^(2)x+a^(3)=0, z+by+b^(2)x+b^(3)=0`,
`z+cy+c^(2)x+c^(3)=0` are ….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations using the method of determinants (Cramer's Rule), we will follow these steps: ### Given Equations: 1. \( z + ay + a^2 x + a^3 = 0 \) 2. \( z + by + b^2 x + b^3 = 0 \) 3. \( z + cy + c^2 x + c^3 = 0 \) We can rewrite these equations in the standard form \( Ax + By + Cz = D \): 1. \( a^2 x + ay + z = -a^3 \) 2. \( b^2 x + by + z = -b^3 \) 3. \( c^2 x + cy + z = -c^3 \) ### Step 1: Set Up the Coefficient Matrix and Constants We can represent the system of equations in matrix form as follows: \[ \begin{bmatrix} a^2 & a & 1 \\ b^2 & b & 1 \\ c^2 & c & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -a^3 \\ -b^3 \\ -c^3 \end{bmatrix} \] ### Step 2: Calculate the Determinant \( \Delta \) The determinant \( \Delta \) of the coefficient matrix is calculated as follows: \[ \Delta = \begin{vmatrix} a^2 & a & 1 \\ b^2 & b & 1 \\ c^2 & c & 1 \end{vmatrix} \] Calculating this determinant using the formula for a 3x3 matrix: \[ \Delta = a^2(b \cdot 1 - c \cdot 1) - a(b^2 \cdot 1 - c^2 \cdot 1) + 1(b^2c - ab^2) \] Simplifying this expression gives: \[ \Delta = a^2(b - c) - a(b^2 - c^2) + (b^2c - ab^2) \] ### Step 3: Calculate \( \Delta_x, \Delta_y, \Delta_z \) Next, we need to calculate \( \Delta_x, \Delta_y, \Delta_z \) by replacing the respective columns with the constant matrix. #### For \( \Delta_x \): Replace the first column with the constants: \[ \Delta_x = \begin{vmatrix} -a^3 & a & 1 \\ -b^3 & b & 1 \\ -c^3 & c & 1 \end{vmatrix} \] Calculating \( \Delta_x \) similarly: \[ \Delta_x = -a^3(b - c) + a(-b^3 + c^3) + 1(-b^3c + ab^3) \] #### For \( \Delta_y \): Replace the second column with the constants: \[ \Delta_y = \begin{vmatrix} a^2 & -a^3 & 1 \\ b^2 & -b^3 & 1 \\ c^2 & -c^3 & 1 \end{vmatrix} \] Calculating \( \Delta_y \): \[ \Delta_y = a^2(-b^3 + c^3) - (-a^3)(b^2 - c^2) + 1(b^2c^3 - a^2b^3) \] #### For \( \Delta_z \): Replace the third column with the constants: \[ \Delta_z = \begin{vmatrix} a^2 & a & -a^3 \\ b^2 & b & -b^3 \\ c^2 & c & -c^3 \end{vmatrix} \] Calculating \( \Delta_z \): \[ \Delta_z = a^2(b(-b^3) - c(-c^3)) - a(b^2(-c^3) - c(-b^3)) + (-a^3)(b^2c - ab^2) \] ### Step 4: Solve for \( x, y, z \) Using Cramer's Rule: \[ x = \frac{\Delta_x}{\Delta}, \quad y = \frac{\Delta_y}{\Delta}, \quad z = \frac{\Delta_z}{\Delta} \] ### Final Values After performing the calculations for \( \Delta, \Delta_x, \Delta_y, \Delta_z \), we can find the values of \( x, y, z \).
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Miscellaneous Exercise (Matching Entries)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 5 (True And False)|5 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Solve the system of equations : z+ay+a^(2)x+a^(3)=0z+by+b^(2)x+b^(3)=0z+cy+c^(2)x+c^(3)=0] where a!=b!=c

The number solutions of the equation |z|^(2)+4bar(z)=0(A)2(B)4(C)6(D)3

The solution of the system of equations a^(2)x+ay+z=-a^(3),b^(2)x+by+z=-b^3, c^2x+cy +z=-c^(3) is (A) x=-(a+b+c),y=ab+bc+ca,z=-abc (B) x=(a+b+c),y=ab+bc+ca,z=-abc (C) x=-(a-b-c),y=ab+bc+ca,z=-abc (D) None of these

Suppose a, b and c are distinct and x,y and z are connected by the system of eqations x+ay+a^(2)z=a^(3),x+by+b^(2)z=b^(3) "and" x+cy+c^(2) z=c^(3).

The solution of the system of equations a_(1)x+b_(1)y+c_(1)z=d_(1),a_(2)x+b_(2)y+c_(2)z=d_(2) and a_(3)x+b_(3)y+c_(3)z=d_(3) using Crammer's rule is x=(Delta_(1))/(Delta),y=(Delta_(2))/(Delta) and z=(Delta_(3))/(Delta) where Delta!=0 The solution of 2x+y+z=1,x-2y-3z=1,3x+2y+4z=5 is

The number of solutions of equations x+y-z=0,3x-y-z=0,x-3y+z=0 is

If x =a, y=b, z=c is a solution of the system of linear equations x + 8y + 7z =0, 9 x + 2y + 3z =0, x + y+z=0 such that point (a,b,c ) lies on the plane x + 2y + z=6, then 2a+ b+c equals

The number of solutions of the system of equations: 2x+y-z=7,\ \ x-3y+2z=1,\ \ x+4y-3z=5 is (a) 3 (b) 2 (c) 1 (d) 0

The number of solutions of the system of equations: 2x+y-z=7x-3y+2z=1, is x+4y-3z=53(b)2 (c) 1 (d) 0