Home
Class 12
MATHS
Given y^(2)+z^(2)=ayz, z^(2)+x^(2)=bxz, ...

Given `y^(2)+z^(2)=ayz, z^(2)+x^(2)=bxz, x^(2)+y^(2)=cxy," express "(y^(2))/(xz) +(xz)/(y^(2))` in terms of a,b,c=….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express \( \frac{y^2}{xz} + \frac{xz}{y^2} \) in terms of \( a, b, c \) given the equations: 1. \( y^2 + z^2 = ayz \) (Equation 1) 2. \( z^2 + x^2 = bzx \) (Equation 2) 3. \( x^2 + y^2 = cxy \) (Equation 3) ### Step-by-Step Solution: **Step 1: Rewrite the equations.** From the given equations, we can express \( y^2 \), \( z^2 \), and \( x^2 \) in terms of \( a, b, c \): - From Equation 1: \[ y^2 = ayz - z^2 \] - From Equation 2: \[ z^2 = bzx - x^2 \] - From Equation 3: \[ x^2 = cxy - y^2 \] **Step 2: Multiply the first equation by \( x^2 + y^2 \).** We will multiply Equation 1 by \( x^2 + y^2 \): \[ (y^2 + z^2)(x^2 + y^2) = ayz(x^2 + y^2) \] Expanding both sides: \[ y^2x^2 + y^4 + z^2x^2 + y^2z^2 = ayzx^2 + ay^2z \] **Step 3: Divide by \( y^2xz \).** Now, we need to find \( \frac{y^2}{xz} + \frac{xz}{y^2} \): \[ \frac{y^2x^2 + y^4 + z^2x^2 + y^2z^2}{y^2xz} = \frac{ayzx^2 + ay^2z}{y^2xz} \] This simplifies to: \[ \frac{y^2}{xz} + \frac{xz}{y^2} + \frac{z^2}{xz} + \frac{y^2}{xz} = a \frac{x^2}{xz} + a \frac{y^2}{xz} \] **Step 4: Combine terms.** Now we can combine the terms: \[ \frac{y^2}{xz} + \frac{xz}{y^2} = a \frac{x}{z} + a \frac{y}{z} \] **Step 5: Substitute values from the equations.** From the previous equations, we can substitute \( a, b, c \) into our expression: \[ \frac{y^2}{xz} + \frac{xz}{y^2} = b + c - a \] ### Final Expression: Thus, the expression \( \frac{y^2}{xz} + \frac{xz}{y^2} \) in terms of \( a, b, c \) is: \[ \frac{y^2}{xz} + \frac{xz}{y^2} = b + c - a \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Miscellaneous Exercise (Matching Entries)|5 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Problem Set - 5 (True And False)|5 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If a^(x)=b^(y)=c^(2) and b^(2)=ac, prove that y=(2xz)/(x+z)

(x)/(y)*(y)/(xz)*(z^(2))/(xy)

if a^(x)=b^(y)=c^(z) and b^(2)= acprove that y=(2xz)/(x+z)

Factorize: x^(2)-y^(2)-4xz+4z^(2)

(y^(2)+yz+z^(2))/((x-y)(x-z))+(z^(2)+zx+x^(2))/((y-z)(y-x))+(x^(2)+xy+y^(2))/((z-x)(z-y))

factorize (x^(2)-y^(2)+z^(2)-a^(2)+2(xz+ay)

Factorise y^(2) + 2xy + 2 xz - z^(2) .

xy,xz,x^(2)+1y^(2)+!,yz,xyyz,z^(2)+1,xz]|=1+x^(2)+y^(2)+z^(2)