Home
Class 12
MATHS
Let a = i +2j -3k and b = 2i +j-k then t...

Let `a = i +2j -3k and b = 2i +j-k` then the vector r satisfying `a xx r = a xx b and a.r =0 ` is of length `sqrt(10)`. True or False

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement is true or false, we need to analyze the vectors given and the conditions provided. Given: - \( \mathbf{a} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k} \) - \( \mathbf{b} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} \) We need to find the vector \( \mathbf{r} \) such that: 1. \( \mathbf{a} \times \mathbf{r} = \mathbf{a} \times \mathbf{b} \) 2. \( \mathbf{a} \cdot \mathbf{r} = 0 \) 3. The length of \( \mathbf{r} \) is \( \sqrt{10} \). ### Step 1: Calculate \( \mathbf{a} \times \mathbf{b} \) To find \( \mathbf{a} \times \mathbf{b} \), we use the determinant of a matrix formed by the unit vectors and the components of \( \mathbf{a} \) and \( \mathbf{b} \): \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -3 \\ 2 & 1 & -1 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \begin{vmatrix} 2 & -3 \\ 1 & -1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & -3 \\ 2 & -1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 2 & -3 \\ 1 & -1 \end{vmatrix} = (2)(-1) - (-3)(1) = -2 + 3 = 1 \) 2. \( \begin{vmatrix} 1 & -3 \\ 2 & -1 \end{vmatrix} = (1)(-1) - (-3)(2) = -1 + 6 = 5 \) 3. \( \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = (1)(1) - (2)(2) = 1 - 4 = -3 \) Putting it all together: \[ \mathbf{a} \times \mathbf{b} = \mathbf{i}(1) - \mathbf{j}(5) + \mathbf{k}(-3) = \mathbf{i} - 5\mathbf{j} - 3\mathbf{k} \] ### Step 2: Set up the equation \( \mathbf{a} \times \mathbf{r} = \mathbf{a} \times \mathbf{b} \) Let \( \mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \). Then: \[ \mathbf{a} \times \mathbf{r} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -3 \\ x & y & z \end{vmatrix} \] Calculating this determinant gives: \[ = \mathbf{i} \begin{vmatrix} 2 & -3 \\ y & z \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & -3 \\ x & z \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 2 \\ x & y \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 2 & -3 \\ y & z \end{vmatrix} = 2z + 3y \) 2. \( \begin{vmatrix} 1 & -3 \\ x & z \end{vmatrix} = z + 3x \) 3. \( \begin{vmatrix} 1 & 2 \\ x & y \end{vmatrix} = y - 2x \) Thus: \[ \mathbf{a} \times \mathbf{r} = (2z + 3y)\mathbf{i} - (z + 3x)\mathbf{j} + (y - 2x)\mathbf{k} \] Setting this equal to \( \mathbf{i} - 5\mathbf{j} - 3\mathbf{k} \): \[ 2z + 3y = 1 \quad (1) \] \[ -(z + 3x) = -5 \quad \Rightarrow \quad z + 3x = 5 \quad (2) \] \[ y - 2x = -3 \quad (3) \] ### Step 3: Solve the system of equations From equation (2): \[ z = 5 - 3x \quad (4) \] Substituting (4) into (1): \[ 2(5 - 3x) + 3y = 1 \] \[ 10 - 6x + 3y = 1 \quad \Rightarrow \quad 3y = 6x - 9 \quad \Rightarrow \quad y = 2x - 3 \quad (5) \] Substituting (5) into (3): \[ (2x - 3) - 2x = -3 \] \[ -3 = -3 \quad \text{(True for all \(x\))} \] Thus, \(y = 2x - 3\) and \(z = 5 - 3x\) are valid for any \(x\). ### Step 4: Find the length of \( \mathbf{r} \) The length of \( \mathbf{r} \) is given by: \[ |\mathbf{r}| = \sqrt{x^2 + y^2 + z^2} \] Substituting \(y\) and \(z\): \[ |\mathbf{r}| = \sqrt{x^2 + (2x - 3)^2 + (5 - 3x)^2} \] Calculating this: \[ = \sqrt{x^2 + (4x^2 - 12x + 9) + (9 - 30x + 9x^2)} \] \[ = \sqrt{(1 + 4 + 9)x^2 - (12 + 30)x + (9 + 9)} \] \[ = \sqrt{14x^2 - 42x + 18} \] Setting this equal to \( \sqrt{10} \): \[ 14x^2 - 42x + 18 = 10 \] \[ 14x^2 - 42x + 8 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{42 \pm \sqrt{(-42)^2 - 4 \cdot 14 \cdot 8}}{2 \cdot 14} \] \[ = \frac{42 \pm \sqrt{1764 - 448}}{28} = \frac{42 \pm \sqrt{1316}}{28} \] \[ = \frac{42 \pm 2\sqrt{329}}{28} = \frac{21 \pm \sqrt{329}}{14} \] ### Conclusion The vector \( \mathbf{r} \) can be found, and its length can indeed be \( \sqrt{10} \) for specific values of \( x \). Therefore, the statement is **True**.
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |104 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |165 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

Let vec a = 2i + j + k, vec b = i + 2j + k and vec c = 2i-3j + 4k, A vector vec r satisfying vec r xxvec b = vec c xxvec b and vec r * vec a = 0 , is

If vec a=i+j+k and vec b=j-k then find vector c, such that a xx c=b and a*c=3

If a=1+2j-3k,b=2i+j-k and u is a vector satisfying a times u=a times b and a .u=0 then 2|u|^(2) is equal to

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (TRUE AND FALSE)
  1. Prove by vector method, that in a right-angled triangle ABC, AB^(2) + ...

    Text Solution

    |

  2. Prove using vectors: The median to the base of an isosceles triangl...

    Text Solution

    |

  3. (i) If |a + b| = |a -b|, then a and b are parallel. True or False

    Text Solution

    |

  4. If |a|=a and | vec b|=b , prove that ( vec a/( vec a^2)- vec b/(b^2))^...

    Text Solution

    |

  5. If the vectors a, b and c are complanar, then |{:(1, b, c),(a*a, a*b,a...

    Text Solution

    |

  6. Prove that |axxb|^2 =a^2b^2 - (a.b)^2

    Text Solution

    |

  7. If a , b, c be the vectors determined by sides BC, CA and AB of a tria...

    Text Solution

    |

  8. Prove (i) r = (r.i) i+(r.j)j+(r.k)k (ii) ixx(axxi) +jxx(axxj)+kx...

    Text Solution

    |

  9. The ratio of lengths of diagonals of the parallelogram constructed on ...

    Text Solution

    |

  10. A vector of magnitude 9 perpendicular to both the vectors a = 4i - j+k...

    Text Solution

    |

  11. The area of a parallelogram constructed on the vectors a +3b and 3a +b...

    Text Solution

    |

  12. Let a = i +2j -3k and b = 2i +j-k then the vector r satisfying a xx r ...

    Text Solution

    |

  13. If a, b, c, are non-zero vectors such that a xx b = b xx c then a + c ...

    Text Solution

    |

  14. If T(p), T(q) and T(r) of a G.P. are +ive numbers a, b, c respectively...

    Text Solution

    |

  15. In a triangle ABC, cos 3A + Cos 2B + cos 2C ge -3//2 . True or Fals...

    Text Solution

    |

  16. For any two vectors u and v, find if (1+|u|^(2))(1+|v|^(2)) = (1-u....

    Text Solution

    |

  17. Using dot product of vectors; prove that a parallelogram; whose diagon...

    Text Solution

    |

  18. If AC and BD are the diagonals of a quadrilateral ABCD, prove that its...

    Text Solution

    |

  19. IF a quadrilateral ABCD is such that vecAB = b, vecAD = d and vecAC = ...

    Text Solution

    |

  20. If a and b are non-collinear, then the point of intersectioon of the ...

    Text Solution

    |