Home
Class 12
MATHS
IF a quadrilateral ABCD is such that vec...

IF a quadrilateral ABCD is such that `vecAB = b, vecAD = d` and `vecAC = pb + qd (p +q ge1)`. Then the area of he quadrilateral is `(1)/(2) (p +q) |bxxd|` . Is this statement true or false ?

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement about the area of quadrilateral ABCD is true or false, we will analyze the given vectors and apply the formula for the area of a quadrilateral. ### Step-by-Step Solution: 1. **Understanding the Vectors**: - We have vectors defined as follows: - \(\vec{AB} = \vec{b}\) - \(\vec{AD} = \vec{d}\) - \(\vec{AC} = p\vec{b} + q\vec{d}\) where \(p + q \geq 1\) 2. **Dividing the Quadrilateral**: - The quadrilateral ABCD can be divided into two triangles: \(\triangle ABC\) and \(\triangle ACD\). 3. **Area of Triangle ABC**: - The area of triangle ABC can be calculated using the formula: \[ \text{Area}_{ABC} = \frac{1}{2} |\vec{AB} \times \vec{AC}| \] - Substituting the vectors: \[ \text{Area}_{ABC} = \frac{1}{2} |\vec{b} \times (p\vec{b} + q\vec{d})| \] - Expanding this using the distributive property of the cross product: \[ = \frac{1}{2} |\vec{b} \times p\vec{b} + \vec{b} \times q\vec{d}| \] - Since \(\vec{b} \times \vec{b} = \vec{0}\), we have: \[ \text{Area}_{ABC} = \frac{1}{2} |q(\vec{b} \times \vec{d})| \] - Therefore: \[ \text{Area}_{ABC} = \frac{q}{2} |\vec{b} \times \vec{d}| \] 4. **Area of Triangle ACD**: - The area of triangle ACD can be calculated similarly: \[ \text{Area}_{ACD} = \frac{1}{2} |\vec{AD} \times \vec{AC}| \] - Substituting the vectors: \[ \text{Area}_{ACD} = \frac{1}{2} |\vec{d} \times (p\vec{b} + q\vec{d})| \] - Expanding this: \[ = \frac{1}{2} |\vec{d} \times p\vec{b} + \vec{d} \times q\vec{d}| \] - Again, since \(\vec{d} \times \vec{d} = \vec{0}\), we have: \[ \text{Area}_{ACD} = \frac{p}{2} |\vec{d} \times \vec{b}| \] - Therefore: \[ \text{Area}_{ACD} = \frac{p}{2} |\vec{b} \times \vec{d}| \] 5. **Total Area of Quadrilateral ABCD**: - The total area of quadrilateral ABCD is the sum of the areas of triangles ABC and ACD: \[ \text{Area}_{ABCD} = \text{Area}_{ABC} + \text{Area}_{ACD} \] - Substituting the areas we calculated: \[ \text{Area}_{ABCD} = \frac{q}{2} |\vec{b} \times \vec{d}| + \frac{p}{2} |\vec{b} \times \vec{d}| \] - Combining the terms: \[ \text{Area}_{ABCD} = \frac{1}{2} (p + q) |\vec{b} \times \vec{d}| \] 6. **Conclusion**: - The statement that the area of the quadrilateral is \(\frac{1}{2} (p + q) |\vec{b} \times \vec{d}|\) is **true**.
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |104 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |165 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (TRUE AND FALSE)
  1. Prove by vector method, that in a right-angled triangle ABC, AB^(2) + ...

    Text Solution

    |

  2. Prove using vectors: The median to the base of an isosceles triangl...

    Text Solution

    |

  3. (i) If |a + b| = |a -b|, then a and b are parallel. True or False

    Text Solution

    |

  4. If |a|=a and | vec b|=b , prove that ( vec a/( vec a^2)- vec b/(b^2))^...

    Text Solution

    |

  5. If the vectors a, b and c are complanar, then |{:(1, b, c),(a*a, a*b,a...

    Text Solution

    |

  6. Prove that |axxb|^2 =a^2b^2 - (a.b)^2

    Text Solution

    |

  7. If a , b, c be the vectors determined by sides BC, CA and AB of a tria...

    Text Solution

    |

  8. Prove (i) r = (r.i) i+(r.j)j+(r.k)k (ii) ixx(axxi) +jxx(axxj)+kx...

    Text Solution

    |

  9. The ratio of lengths of diagonals of the parallelogram constructed on ...

    Text Solution

    |

  10. A vector of magnitude 9 perpendicular to both the vectors a = 4i - j+k...

    Text Solution

    |

  11. The area of a parallelogram constructed on the vectors a +3b and 3a +b...

    Text Solution

    |

  12. Let a = i +2j -3k and b = 2i +j-k then the vector r satisfying a xx r ...

    Text Solution

    |

  13. If a, b, c, are non-zero vectors such that a xx b = b xx c then a + c ...

    Text Solution

    |

  14. If T(p), T(q) and T(r) of a G.P. are +ive numbers a, b, c respectively...

    Text Solution

    |

  15. In a triangle ABC, cos 3A + Cos 2B + cos 2C ge -3//2 . True or Fals...

    Text Solution

    |

  16. For any two vectors u and v, find if (1+|u|^(2))(1+|v|^(2)) = (1-u....

    Text Solution

    |

  17. Using dot product of vectors; prove that a parallelogram; whose diagon...

    Text Solution

    |

  18. If AC and BD are the diagonals of a quadrilateral ABCD, prove that its...

    Text Solution

    |

  19. IF a quadrilateral ABCD is such that vecAB = b, vecAD = d and vecAC = ...

    Text Solution

    |

  20. If a and b are non-collinear, then the point of intersectioon of the ...

    Text Solution

    |