Home
Class 12
MATHS
If a = (2, 3, 5), b = (3, -6,2), c = (6,...

If `a = (2, 3, 5), b = (3, -6,2), c = (6, 2,-3)` then `a xx b =...?and b xxc = ..?` and `(a xx b) xx c = a xx (b xx c) =0` . True or False

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the cross products of the vectors \( a \), \( b \), and \( c \) as given: 1. **Given Vectors:** - \( a = (2, 3, 5) \) - \( b = (3, -6, 2) \) - \( c = (6, 2, -3) \) 2. **Calculate \( a \times b \):** The cross product \( a \times b \) can be calculated using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of vectors \( a \) and \( b \). \[ a \times b = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 5 \\ 3 & -6 & 2 \end{vmatrix} \] Expanding this determinant: \[ a \times b = \hat{i} \begin{vmatrix} 3 & 5 \\ -6 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 5 \\ 3 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ 3 & -6 \end{vmatrix} \] Calculating each of these 2x2 determinants: - For \( \hat{i} \): \[ 3 \cdot 2 - (-6) \cdot 5 = 6 + 30 = 36 \] - For \( \hat{j} \): \[ 2 \cdot 2 - 3 \cdot 5 = 4 - 15 = -11 \quad \Rightarrow \quad -(-11) = 11 \] - For \( \hat{k} \): \[ 2 \cdot (-6) - 3 \cdot 3 = -12 - 9 = -21 \] Therefore, combining these results: \[ a \times b = 36 \hat{i} + 11 \hat{j} - 21 \hat{k} = (36, 11, -21) \] 3. **Calculate \( b \times c \):** Similarly, we calculate \( b \times c \): \[ b \times c = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -6 & 2 \\ 6 & 2 & -3 \end{vmatrix} \] Expanding this determinant: \[ b \times c = \hat{i} \begin{vmatrix} -6 & 2 \\ 2 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 2 \\ 6 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -6 \\ 6 & 2 \end{vmatrix} \] Calculating these 2x2 determinants: - For \( \hat{i} \): \[ (-6)(-3) - (2)(2) = 18 - 4 = 14 \] - For \( \hat{j} \): \[ 3 \cdot (-3) - 2 \cdot 6 = -9 - 12 = -21 \quad \Rightarrow \quad -(-21) = 21 \] - For \( \hat{k} \): \[ 3 \cdot 2 - (-6) \cdot 6 = 6 + 36 = 42 \] Therefore, combining these results: \[ b \times c = 14 \hat{i} + 21 \hat{j} + 42 \hat{k} = (14, 21, 42) \] 4. **Check if \( (a \times b) \times c = a \times (b \times c) = 0 \):** We need to calculate \( (a \times b) \times c \) and \( a \times (b \times c) \). First, we calculate \( (a \times b) \times c \): \[ (a \times b) \times c = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 36 & 11 & -21 \\ 6 & 2 & -3 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i} \begin{vmatrix} 11 & -21 \\ 2 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 36 & -21 \\ 6 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 36 & 11 \\ 6 & 2 \end{vmatrix} \] Calculating these: - For \( \hat{i} \): \[ 11 \cdot (-3) - (-21) \cdot 2 = -33 + 42 = 9 \] - For \( \hat{j} \): \[ 36 \cdot (-3) - (-21) \cdot 6 = -108 + 126 = 18 \quad \Rightarrow \quad -18 \] - For \( \hat{k} \): \[ 36 \cdot 2 - 11 \cdot 6 = 72 - 66 = 6 \] Therefore: \[ (a \times b) \times c = 9 \hat{i} - 18 \hat{j} + 6 \hat{k} \neq 0 \] Now, calculate \( a \times (b \times c) \): We already calculated \( b \times c = (14, 21, 42) \). \[ a \times (b \times c) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 5 \\ 14 & 21 & 42 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i} \begin{vmatrix} 3 & 5 \\ 21 & 42 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 5 \\ 14 & 42 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ 14 & 21 \end{vmatrix} \] Calculating these: - For \( \hat{i} \): \[ 3 \cdot 42 - 5 \cdot 21 = 126 - 105 = 21 \] - For \( \hat{j} \): \[ 2 \cdot 42 - 5 \cdot 14 = 84 - 70 = 14 \quad \Rightarrow \quad -14 \] - For \( \hat{k} \): \[ 2 \cdot 21 - 3 \cdot 14 = 42 - 42 = 0 \] Therefore: \[ a \times (b \times c) = 21 \hat{i} - 14 \hat{j} + 0 \hat{k} \neq 0 \] 5. **Conclusion:** Since both \( (a \times b) \times c \) and \( a \times (b \times c) \) are not equal to the zero vector, the statement \( (a \times b) \times c = a \times (b \times c) = 0 \) is **False**.
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |104 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

If A=(a,b,c) and B=(1,2,3) then find A xx B .

If A = {2, 3, 5}, B = {2, 5, 6}, then (A - B) xx (AnnB) is

If A = {1, 2, 5, 6} and B = {1, 2, 3}, then what is (A xx B) nn (B xx A) equal to?

If n(A xx B) = 24, n(B xx C) = 36 , and n(B) = 3 , then n(A xx C) =

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (FILL IN THE BLANKS)
  1. If a = i+2j+2k, and b=3i+6j+2k, then the vector in the direction of a ...

    Text Solution

    |

  2. If a = (2, 3, 5), b = (3, -6,2), c = (6, 2,-3) then a xx b =...?and b ...

    Text Solution

    |

  3. If A = (1,2, 5), B = (5, 7, 9) and C = (3, 2, -1) then a unit vector n...

    Text Solution

    |

  4. If for all real x the vector cxhati-6hatj+3hatk and xhati+2hatj+2cxhat...

    Text Solution

    |

  5. Projection of b = 2i + 3j -2k in the direction of vector a = i+2j+3k i...

    Text Solution

    |

  6. (i)a xx (b + c) + b xx (c + a) + c xx(a +b) =

    Text Solution

    |

  7. (i) If vecOA = a, vecOB = b, then the vector area of triangle OAB is ....

    Text Solution

    |

  8. If the diagonals of a parallelogram are 3i+j-2k and i -3j +4k then its...

    Text Solution

    |

  9. If a = 2i-3j+k, b=-i+k,c=2j-k then the area of parallelogram whose dia...

    Text Solution

    |

  10. a =i-2j+3k,b=3i+j+2k then a vector c which is linear combination of a ...

    Text Solution

    |

  11. The distance of the point B(i+2j+3k) from the line which is passing th...

    Text Solution

    |

  12. If veca,vecb,vecc are non coplanar vector and vecn.veca=vecn.vecb=vecn...

    Text Solution

    |

  13. A,B,C,D are four points in space and |bar(AB) times bar(CD) +bar(BC) t...

    Text Solution

    |

  14. If [I, j, k] be a set of orthogonal unit vectors, then fill up the bla...

    Text Solution

    |

  15. The components of a vector veca along and perpendicular to a non-zero ...

    Text Solution

    |

  16. If r be any vector, then |r xx i|^(2) + |r xx j|^(2) + |r xxk|^(2) =...

    Text Solution

    |

  17. The points O, A, B, C, D are such that vecOA = a, vecOB = b, vecOC = 2...

    Text Solution

    |

  18. Let vec O A- vec a , hat O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  19. A non-zero vector is a parallel to theline of intersection of the plan...

    Text Solution

    |

  20. A vector of magnitude sqrt(2) units and coplanar with vector 3i-j-k a...

    Text Solution

    |