Home
Class 12
MATHS
(i) If vecOA = a, vecOB = b, then the ve...

(i) If `vecOA = a, vecOB = b`, then the vector area of triangle OAB is ........and the vector area of triangle ABC is .........where `vecOC= c`
(ii) If a, b, c are vectors from origin to the point A,B, C then`(a xx b + b xx c + c xx a)` is ........... to plane ABC.
(iii) Vertices of a triangle are `(1,2, 4), (3, 1, -2)` and `(4, 3, 1)` then its area is .......

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given question step by step. ### Part (i) 1. **Vector Area of Triangle OAB**: - The area of triangle OAB can be calculated using the formula: \[ \text{Area} = \frac{1}{2} \vec{OA} \times \vec{OB} \] - Given that \( \vec{OA} = \vec{a} \) and \( \vec{OB} = \vec{b} \), we can substitute these into the formula: \[ \text{Area of triangle OAB} = \frac{1}{2} \vec{a} \times \vec{b} \] 2. **Vector Area of Triangle ABC**: - The area of triangle ABC can be calculated using the formula: \[ \text{Area} = \frac{1}{2} \left( \vec{AB} \times \vec{AC} \right) \] - Here, \( \vec{AB} = \vec{b} - \vec{a} \) and \( \vec{AC} = \vec{c} - \vec{a} \). Thus, we can express the area as: \[ \text{Area of triangle ABC} = \frac{1}{2} \left( \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b} \right) \] ### Part (ii) - The expression \( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \) is a vector that is perpendicular to the plane formed by the vectors \( \vec{a}, \vec{b}, \vec{c} \). Therefore, we conclude: \[ \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \text{ is perpendicular to plane ABC.} \] ### Part (iii) 1. **Vertices of the Triangle**: - The vertices of the triangle are given as \( A(1, 2, 4) \), \( B(3, 1, -2) \), and \( C(4, 3, 1) \). 2. **Vectors from Origin**: - We can denote these points as vectors: \[ \vec{A} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \quad \vec{B} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}, \quad \vec{C} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix} \] 3. **Calculating Cross Products**: - First, calculate \( \vec{AB} = \vec{B} - \vec{A} \): \[ \vec{AB} = \begin{pmatrix} 3 - 1 \\ 1 - 2 \\ -2 - 4 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -6 \end{pmatrix} \] - Next, calculate \( \vec{AC} = \vec{C} - \vec{A} \): \[ \vec{AC} = \begin{pmatrix} 4 - 1 \\ 3 - 2 \\ 1 - 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ -3 \end{pmatrix} \] 4. **Area Calculation**: - The area of triangle ABC is given by: \[ \text{Area} = \frac{1}{2} \left| \vec{AB} \times \vec{AC} \right| \] - Calculate the cross product \( \vec{AB} \times \vec{AC} \): \[ \vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & -6 \\ 3 & 1 & -3 \end{vmatrix} \] - This determinant can be calculated to find the area. 5. **Final Area Calculation**: - After calculating the determinant, we find: \[ \text{Area} = \frac{1}{2} \sqrt{250} = \frac{5\sqrt{10}}{2} \text{ square units.} \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |104 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (FILL IN THE BLANKS)
  1. If for all real x the vector cxhati-6hatj+3hatk and xhati+2hatj+2cxhat...

    Text Solution

    |

  2. Projection of b = 2i + 3j -2k in the direction of vector a = i+2j+3k i...

    Text Solution

    |

  3. (i)a xx (b + c) + b xx (c + a) + c xx(a +b) =

    Text Solution

    |

  4. (i) If vecOA = a, vecOB = b, then the vector area of triangle OAB is ....

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3i+j-2k and i -3j +4k then its...

    Text Solution

    |

  6. If a = 2i-3j+k, b=-i+k,c=2j-k then the area of parallelogram whose dia...

    Text Solution

    |

  7. a =i-2j+3k,b=3i+j+2k then a vector c which is linear combination of a ...

    Text Solution

    |

  8. The distance of the point B(i+2j+3k) from the line which is passing th...

    Text Solution

    |

  9. If veca,vecb,vecc are non coplanar vector and vecn.veca=vecn.vecb=vecn...

    Text Solution

    |

  10. A,B,C,D are four points in space and |bar(AB) times bar(CD) +bar(BC) t...

    Text Solution

    |

  11. If [I, j, k] be a set of orthogonal unit vectors, then fill up the bla...

    Text Solution

    |

  12. The components of a vector veca along and perpendicular to a non-zero ...

    Text Solution

    |

  13. If r be any vector, then |r xx i|^(2) + |r xx j|^(2) + |r xxk|^(2) =...

    Text Solution

    |

  14. The points O, A, B, C, D are such that vecOA = a, vecOB = b, vecOC = 2...

    Text Solution

    |

  15. Let vec O A- vec a , hat O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  16. A non-zero vector is a parallel to theline of intersection of the plan...

    Text Solution

    |

  17. A vector of magnitude sqrt(2) units and coplanar with vector 3i-j-k a...

    Text Solution

    |

  18. A unit vector coplanar with i+j+2k and i+2j+k and perpendicular to i+j...

    Text Solution

    |

  19. In a parallelogram ABCD, bisectors of consecutive angles A and B inter...

    Text Solution

    |

  20. If alpha,beta,gamma satisfy k xx(kxxa) =0 and a =alphai+betaj+gammak, ...

    Text Solution

    |