Home
Class 12
MATHS
If r be any vector, then |r xx i|^(2) ...

If r be any vector, then
`|r xx i|^(2) + |r xx j|^(2) + |r xxk|^(2) =` ........

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( |r \times \hat{i}|^2 + |r \times \hat{j}|^2 + |r \times \hat{k}|^2 \) where \( r \) is a vector represented as \( r = r_1 \hat{i} + r_2 \hat{j} + r_3 \hat{k} \). ### Step-by-Step Solution: 1. **Define the Vector**: Let \( r = r_1 \hat{i} + r_2 \hat{j} + r_3 \hat{k} \). 2. **Calculate \( r \times \hat{i} \)**: \[ r \times \hat{i} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ r_1 & r_2 & r_3 \\ 1 & 0 & 0 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i}(r_2 \cdot 0 - r_3 \cdot 0) - \hat{j}(r_1 \cdot 0 - r_3 \cdot 1) + \hat{k}(r_1 \cdot 0 - r_2 \cdot 1) \] \[ = -r_3 \hat{j} + r_2 \hat{k} \] Therefore, \[ r \times \hat{i} = -r_3 \hat{j} + r_2 \hat{k} \] 3. **Magnitude of \( r \times \hat{i} \)**: \[ |r \times \hat{i}|^2 = (-r_3)^2 + (r_2)^2 = r_3^2 + r_2^2 \] 4. **Calculate \( r \times \hat{j} \)**: \[ r \times \hat{j} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ r_1 & r_2 & r_3 \\ 0 & 1 & 0 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i}(r_2 \cdot 0 - r_3 \cdot 0) - \hat{j}(r_1 \cdot 0 - r_3 \cdot 1) + \hat{k}(r_1 \cdot 1 - r_2 \cdot 0) \] \[ = r_3 \hat{i} - r_1 \hat{k} \] Therefore, \[ r \times \hat{j} = r_3 \hat{i} - r_1 \hat{k} \] 5. **Magnitude of \( r \times \hat{j} \)**: \[ |r \times \hat{j}|^2 = (r_3)^2 + (-r_1)^2 = r_3^2 + r_1^2 \] 6. **Calculate \( r \times \hat{k} \)**: \[ r \times \hat{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ r_1 & r_2 & r_3 \\ 0 & 0 & 1 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i}(r_2 \cdot 1 - r_3 \cdot 0) - \hat{j}(r_1 \cdot 1 - r_3 \cdot 0) + \hat{k}(r_1 \cdot 0 - r_2 \cdot 0) \] \[ = r_2 \hat{i} - r_1 \hat{j} \] Therefore, \[ r \times \hat{k} = r_2 \hat{i} - r_1 \hat{j} \] 7. **Magnitude of \( r \times \hat{k} \)**: \[ |r \times \hat{k}|^2 = (r_2)^2 + (-r_1)^2 = r_2^2 + r_1^2 \] 8. **Final Calculation**: Now, we sum the magnitudes: \[ |r \times \hat{i}|^2 + |r \times \hat{j}|^2 + |r \times \hat{k}|^2 = (r_3^2 + r_2^2) + (r_3^2 + r_1^2) + (r_2^2 + r_1^2) \] \[ = 2r_1^2 + 2r_2^2 + 2r_3^2 \] \[ = 2(r_1^2 + r_2^2 + r_3^2) \] 9. **Magnitude of Vector \( r \)**: The magnitude of vector \( r \) is given by: \[ |r|^2 = r_1^2 + r_2^2 + r_3^2 \] 10. **Final Result**: Therefore, the final result is: \[ |r \times \hat{i}|^2 + |r \times \hat{j}|^2 + |r \times \hat{k}|^2 = 2|r|^2 \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |104 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

Given any vector vec r,|vec r xxhat i|^(2)+|vec r xxhat j|^(2)+|vec r xxhat k|^(2) equals:

For any vector vec(a) , the value of |vec(a) xx hat(i)|^(2) + |vec(a) xx hat(j)|^(2) + |vec(a) xx hat(k)|^(2) is equal to

For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |vec(a) xx hat(k)|^(2) is equal to

If vec r=xi+yj+zk, find (vec r xx i)*(vec r xx j)+xy

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (FILL IN THE BLANKS)
  1. If for all real x the vector cxhati-6hatj+3hatk and xhati+2hatj+2cxhat...

    Text Solution

    |

  2. Projection of b = 2i + 3j -2k in the direction of vector a = i+2j+3k i...

    Text Solution

    |

  3. (i)a xx (b + c) + b xx (c + a) + c xx(a +b) =

    Text Solution

    |

  4. (i) If vecOA = a, vecOB = b, then the vector area of triangle OAB is ....

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3i+j-2k and i -3j +4k then its...

    Text Solution

    |

  6. If a = 2i-3j+k, b=-i+k,c=2j-k then the area of parallelogram whose dia...

    Text Solution

    |

  7. a =i-2j+3k,b=3i+j+2k then a vector c which is linear combination of a ...

    Text Solution

    |

  8. The distance of the point B(i+2j+3k) from the line which is passing th...

    Text Solution

    |

  9. If veca,vecb,vecc are non coplanar vector and vecn.veca=vecn.vecb=vecn...

    Text Solution

    |

  10. A,B,C,D are four points in space and |bar(AB) times bar(CD) +bar(BC) t...

    Text Solution

    |

  11. If [I, j, k] be a set of orthogonal unit vectors, then fill up the bla...

    Text Solution

    |

  12. The components of a vector veca along and perpendicular to a non-zero ...

    Text Solution

    |

  13. If r be any vector, then |r xx i|^(2) + |r xx j|^(2) + |r xxk|^(2) =...

    Text Solution

    |

  14. The points O, A, B, C, D are such that vecOA = a, vecOB = b, vecOC = 2...

    Text Solution

    |

  15. Let vec O A- vec a , hat O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  16. A non-zero vector is a parallel to theline of intersection of the plan...

    Text Solution

    |

  17. A vector of magnitude sqrt(2) units and coplanar with vector 3i-j-k a...

    Text Solution

    |

  18. A unit vector coplanar with i+j+2k and i+2j+k and perpendicular to i+j...

    Text Solution

    |

  19. In a parallelogram ABCD, bisectors of consecutive angles A and B inter...

    Text Solution

    |

  20. If alpha,beta,gamma satisfy k xx(kxxa) =0 and a =alphai+betaj+gammak, ...

    Text Solution

    |