Home
Class 12
MATHS
A non-zero vector is a parallel to theli...

A non-zero vector is a parallel to theline of intersection of the plane determined by the vectors `i,i+j` and the plane dtermined by the vectors `i-j,i+k`. The angle between a and the vector `i-2j+2k` is ........

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a non-zero vector that is parallel to the line of intersection of two planes defined by the given vectors. We will then find the angle between this vector and the vector \( \mathbf{d} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k} \). ### Step 1: Find the normal vectors of the planes 1. **Plane 1** is determined by the vectors \( \mathbf{a_1} = \mathbf{i} \) and \( \mathbf{a_2} = \mathbf{i} + \mathbf{j} \). - The normal vector \( \mathbf{n_1} \) can be found using the cross product: \[ \mathbf{n_1} = \mathbf{a_1} \times \mathbf{a_2} = \mathbf{i} \times (\mathbf{i} + \mathbf{j}) = \mathbf{i} \times \mathbf{i} + \mathbf{i} \times \mathbf{j} = \mathbf{0} + \mathbf{k} = \mathbf{k} \] 2. **Plane 2** is determined by the vectors \( \mathbf{b_1} = \mathbf{i} - \mathbf{j} \) and \( \mathbf{b_2} = \mathbf{i} + \mathbf{k} \). - The normal vector \( \mathbf{n_2} \) can be found using the cross product: \[ \mathbf{n_2} = \mathbf{b_1} \times \mathbf{b_2} = (\mathbf{i} - \mathbf{j}) \times (\mathbf{i} + \mathbf{k}) \] - Expanding this: \[ \mathbf{n_2} = \mathbf{i} \times \mathbf{i} + \mathbf{i} \times \mathbf{k} - \mathbf{j} \times \mathbf{i} - \mathbf{j} \times \mathbf{k} = \mathbf{0} + \mathbf{j} + \mathbf{j} + \mathbf{i} = \mathbf{i} + 2\mathbf{j} \] ### Step 2: Find the direction vector of the line of intersection The direction vector \( \mathbf{d} \) of the line of intersection of the two planes can be found using the cross product of the normal vectors: \[ \mathbf{d} = \mathbf{n_1} \times \mathbf{n_2} = \mathbf{k} \times (\mathbf{i} + 2\mathbf{j}) \] Calculating this: \[ \mathbf{d} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 0 & 1 \\ 1 & 2 & 0 \end{vmatrix} = \mathbf{i}(0 - 2) - \mathbf{j}(0 - 1) + \mathbf{k}(0 - 0) = -2\mathbf{i} + \mathbf{j} \] Thus, the direction vector of the line of intersection is: \[ \mathbf{d} = -2\mathbf{i} + \mathbf{j} \] ### Step 3: Find the angle between the vector \( \mathbf{d} \) and \( \mathbf{v} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k} \) To find the angle \( \theta \) between the vectors \( \mathbf{d} \) and \( \mathbf{v} \), we use the dot product formula: \[ \cos \theta = \frac{\mathbf{d} \cdot \mathbf{v}}{|\mathbf{d}| |\mathbf{v}|} \] 1. **Calculate the dot product \( \mathbf{d} \cdot \mathbf{v} \)**: \[ \mathbf{d} \cdot \mathbf{v} = (-2\mathbf{i} + \mathbf{j}) \cdot (\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) = -2(1) + 1(-2) + 0(2) = -2 - 2 = -4 \] 2. **Calculate the magnitudes \( |\mathbf{d}| \) and \( |\mathbf{v}| \)**: - For \( \mathbf{d} \): \[ |\mathbf{d}| = \sqrt{(-2)^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5} \] - For \( \mathbf{v} \): \[ |\mathbf{v}| = \sqrt{1^2 + (-2)^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] 3. **Substituting into the cosine formula**: \[ \cos \theta = \frac{-4}{\sqrt{5} \cdot 3} = \frac{-4}{3\sqrt{5}} \] 4. **Finding \( \theta \)**: To find the angle \( \theta \): \[ \theta = \cos^{-1}\left(\frac{-4}{3\sqrt{5}}\right) \] ### Final Answer The angle between the vector \( \mathbf{a} \) (the direction of the line of intersection) and the vector \( \mathbf{d} \) is: \[ \theta = \cos^{-1}\left(\frac{-4}{3\sqrt{5}}\right) \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |104 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (FILL IN THE BLANKS)
  1. If for all real x the vector cxhati-6hatj+3hatk and xhati+2hatj+2cxhat...

    Text Solution

    |

  2. Projection of b = 2i + 3j -2k in the direction of vector a = i+2j+3k i...

    Text Solution

    |

  3. (i)a xx (b + c) + b xx (c + a) + c xx(a +b) =

    Text Solution

    |

  4. (i) If vecOA = a, vecOB = b, then the vector area of triangle OAB is ....

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3i+j-2k and i -3j +4k then its...

    Text Solution

    |

  6. If a = 2i-3j+k, b=-i+k,c=2j-k then the area of parallelogram whose dia...

    Text Solution

    |

  7. a =i-2j+3k,b=3i+j+2k then a vector c which is linear combination of a ...

    Text Solution

    |

  8. The distance of the point B(i+2j+3k) from the line which is passing th...

    Text Solution

    |

  9. If veca,vecb,vecc are non coplanar vector and vecn.veca=vecn.vecb=vecn...

    Text Solution

    |

  10. A,B,C,D are four points in space and |bar(AB) times bar(CD) +bar(BC) t...

    Text Solution

    |

  11. If [I, j, k] be a set of orthogonal unit vectors, then fill up the bla...

    Text Solution

    |

  12. The components of a vector veca along and perpendicular to a non-zero ...

    Text Solution

    |

  13. If r be any vector, then |r xx i|^(2) + |r xx j|^(2) + |r xxk|^(2) =...

    Text Solution

    |

  14. The points O, A, B, C, D are such that vecOA = a, vecOB = b, vecOC = 2...

    Text Solution

    |

  15. Let vec O A- vec a , hat O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  16. A non-zero vector is a parallel to theline of intersection of the plan...

    Text Solution

    |

  17. A vector of magnitude sqrt(2) units and coplanar with vector 3i-j-k a...

    Text Solution

    |

  18. A unit vector coplanar with i+j+2k and i+2j+k and perpendicular to i+j...

    Text Solution

    |

  19. In a parallelogram ABCD, bisectors of consecutive angles A and B inter...

    Text Solution

    |

  20. If alpha,beta,gamma satisfy k xx(kxxa) =0 and a =alphai+betaj+gammak, ...

    Text Solution

    |