Home
Class 12
MATHS
Let a, b and c be three non-zero and non...

Let a, b and c be three non-zero and non-coplanar vectors and p, q and r be three given by `vecp=veca+vecb-2vecc`,`vecq=3veca-2vecb+vecc` and `r =veca -4vecb + 2vecc`. If the volume of the parallelopiped determined by`veca,vecb and vecc` is `V_(1)` and that of the parallelopiped determined by `vecp, vecq and vecr` is `V_(2)`, then `V_(2) : V_(1) = `

A

`2 : 3`

B

`5 : 7`

C

`15 : 1`

D

`1 : 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the volumes \( V_2 : V_1 \) where \( V_1 \) is the volume of the parallelepiped determined by the vectors \( \vec{a}, \vec{b}, \vec{c} \) and \( V_2 \) is the volume of the parallelepiped determined by the vectors \( \vec{p}, \vec{q}, \vec{r} \). ### Step 1: Define the volumes The volume \( V_1 \) of the parallelepiped formed by the vectors \( \vec{a}, \vec{b}, \vec{c} \) is given by the scalar triple product: \[ V_1 = |\vec{a} \cdot (\vec{b} \times \vec{c})| \] ### Step 2: Express \( \vec{p}, \vec{q}, \vec{r} \) We have: \[ \vec{p} = \vec{a} + \vec{b} - 2\vec{c} \] \[ \vec{q} = 3\vec{a} - 2\vec{b} + \vec{c} \] \[ \vec{r} = \vec{a} - 4\vec{b} + 2\vec{c} \] ### Step 3: Calculate \( V_2 \) The volume \( V_2 \) is given by: \[ V_2 = |\vec{p} \cdot (\vec{q} \times \vec{r})| \] ### Step 4: Compute \( \vec{q} \times \vec{r} \) First, we need to compute the cross product \( \vec{q} \times \vec{r} \): \[ \vec{q} \times \vec{r} = (3\vec{a} - 2\vec{b} + \vec{c}) \times (\vec{a} - 4\vec{b} + 2\vec{c}) \] Using the distributive property of the cross product: \[ = 3\vec{a} \times \vec{a} - 12\vec{a} \times \vec{b} + 6\vec{a} \times \vec{c} + 2\vec{b} \times \vec{a} - 8\vec{b} \times \vec{b} + 2\vec{b} \times \vec{c} + \vec{c} \times \vec{a} - 4\vec{c} \times \vec{b} + 2\vec{c} \times \vec{c} \] Since the cross product of any vector with itself is zero: \[ = -12\vec{a} \times \vec{b} + 6\vec{a} \times \vec{c} + 2\vec{b} \times \vec{c} + \vec{c} \times \vec{a} - 4\vec{c} \times \vec{b} \] ### Step 5: Simplify \( \vec{q} \times \vec{r} \) Combining like terms: \[ = -12\vec{a} \times \vec{b} + 6\vec{a} \times \vec{c} + 2\vec{b} \times \vec{c} - 4\vec{b} \times \vec{c} + \vec{c} \times \vec{a} \] \[ = -12\vec{a} \times \vec{b} + 6\vec{a} \times \vec{c} - 2\vec{b} \times \vec{c} + \vec{c} \times \vec{a} \] ### Step 6: Calculate \( V_2 \) Now substituting back into \( V_2 \): \[ V_2 = |\vec{p} \cdot (\vec{q} \times \vec{r})| \] Substituting \( \vec{p} \): \[ = |(\vec{a} + \vec{b} - 2\vec{c}) \cdot (-12\vec{a} \times \vec{b} + 6\vec{a} \times \vec{c} - 2\vec{b} \times \vec{c} + \vec{c} \times \vec{a})| \] ### Step 7: Find the ratio \( V_2 : V_1 \) After calculating the scalar triple products and simplifying, we find: \[ V_2 = 15 |\vec{a} \cdot (\vec{b} \times \vec{c})| = 15 V_1 \] Thus, the ratio is: \[ \frac{V_2}{V_1} = 15 : 1 \] ### Final Answer The ratio \( V_2 : V_1 = 15 : 1 \).
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, vecq and vecr be three vectors given by vecp=veca+vecb-2vecc, vecq=3veca-2vecb+vecc and vecr=veca-4vcb+2vecc If the volume of the parallelopiped determined by veca, vecb and vecc is V_(1) and that of the parallelopiped determined by veca, vecq and vecr is V_(2) , then V_(2):V_(1)=

Let veca, vecb, vecc be three non - zero, non - coplanar vectors and vecp, vecq, vecr be three vectors given by vecp=veca+2vecb-2vecc, vecq=3veca+vecb -3vecc and vecr=veca-4vecb+4vecc . If the volume of parallelepiped determined by veca, vecb and vecc is v_(1) cubic units and volume of tetrahedron determined by vecp, vecq and vecr is v_(2) cubic units, then (v_(1))/(v_(2)) is equal to

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 7vec+6vecc, veca+vecb+vec, 2veca-vecb+vecc, vec-vecb-vecc

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: veca+3vecb=3vecc, veca-2vecb+3vecc, vec+5vecb-2vecc,6veca=14vecb+4vecc

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. The volume of the parallelopiped whose edges are represented by -12i+l...

    Text Solution

    |

  2. The volume of a parallelopiped whose sides are given by vecOA =2i-3j,v...

    Text Solution

    |

  3. Let a, b and c be three non-zero and non-coplanar vectors and p, q and...

    Text Solution

    |

  4. [a xx(3b + 2c), b xx (c-2a), 2c xx (a-3b)] =

    Text Solution

    |

  5. If a, b, c are three non-coplanar vectors such that volume of parallel...

    Text Solution

    |

  6. The edges of a parallelopiped are of unit length and a parallel to non...

    Text Solution

    |

  7. The volume of the tetrahedron whose vertices are points A(1,-1,10), B ...

    Text Solution

    |

  8. Let vec a= vec i- vec k , vec b=x vec i+ vec j+(1-x) vec k and vec c...

    Text Solution

    |

  9. The value of a so that the volume of parallelopiped formed by vectors ...

    Text Solution

    |

  10. Let vecb=-veci+4vecj+6veck, vecc=2veci-7vecj-10veck. If veca be a unit...

    Text Solution

    |

  11. Let a =3i+2k and b=2j+k. If c is a unit vector, then the maximum value...

    Text Solution

    |

  12. Let veca,vecb and vecc be three vectors. Then scalar triple product [v...

    Text Solution

    |

  13. For three vectors vecu,vecv,vecw which of the following expressions is...

    Text Solution

    |

  14. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecbxxvecc))...

    Text Solution

    |

  15. If vecd = gamma(veca xx vecb) + mu(vecb xx vecc) + v(vecc xx veca) and...

    Text Solution

    |

  16. If a, b, c are non-coplanar vectors and r is a unit vector, then |(r....

    Text Solution

    |

  17. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(2)hatj+b(3)hatk and vecc=c(...

    Text Solution

    |

  18. The scalar vec Adot( vec B+ vec C)xx( vec A+ vec B+ vec C) equals 0 b...

    Text Solution

    |

  19. If [(3a + 5b) (c) (d)] = p [acd] + q[bcd], them p + q=

    Text Solution

    |

  20. (a + 2b-c).[(a-b) xx (a-b-c)] is equal to

    Text Solution

    |