Home
Class 12
MATHS
If a, b, c are three non-coplanar vector...

If a, b, c are three non-coplanar vectors such that volume of parallelopiped formed with a ,b , c as coterminous edges is equal to volume of parallelopiped formed with `a xx b, bxxc, c xxa` as coterminous edges, then :

A

`[abc] = 0`

B

`[abc] =1`

C

`[abc] =-1`

D

`[abc] epsi[-1,1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given information about the volumes of the parallelepipeds formed by the vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c} \) and \( \mathbf{a} \times \mathbf{b}, \mathbf{b} \times \mathbf{c}, \mathbf{c} \times \mathbf{a} \). ### Step 1: Understand the Volume of Parallelepiped The volume \( V \) of a parallelepiped formed by three vectors \( \mathbf{u}, \mathbf{v}, \mathbf{w} \) is given by the scalar triple product: \[ V = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| \] ### Step 2: Set Up the Equation According to the problem, we have: \[ |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})| = |\mathbf{(a \times b)} \cdot (\mathbf{(b \times c)} \times \mathbf{(c \times a)})| \] ### Step 3: Calculate the Left Side The left side is straightforward: \[ V_1 = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})| \] ### Step 4: Calculate the Right Side For the right side, we need to evaluate \( \mathbf{(b \times c)} \times \mathbf{(c \times a)} \). We can use the vector triple product identity: \[ \mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z}) \mathbf{y} - (\mathbf{x} \cdot \mathbf{y}) \mathbf{z} \] Let \( \mathbf{x} = \mathbf{b} \), \( \mathbf{y} = \mathbf{c} \), and \( \mathbf{z} = \mathbf{a} \): \[ \mathbf{(b \times c)} \times \mathbf{(c \times a)} = (\mathbf{b} \cdot \mathbf{a}) \mathbf{c} - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} \] ### Step 5: Substitute Back into the Right Side Now substituting back into the right side: \[ V_2 = |\mathbf{a} \times \mathbf{b} \cdot ((\mathbf{b} \cdot \mathbf{a}) \mathbf{c} - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a})| \] ### Step 6: Simplify the Right Side Using the distributive property: \[ V_2 = |(\mathbf{a} \times \mathbf{b}) \cdot ((\mathbf{b} \cdot \mathbf{a}) \mathbf{c}) - (\mathbf{a} \times \mathbf{b}) \cdot ((\mathbf{b} \cdot \mathbf{c}) \mathbf{a})| \] The first term simplifies to \( (\mathbf{b} \cdot \mathbf{a}) |\mathbf{a} \times \mathbf{b}| \) and the second term is zero since \( \mathbf{a} \times \mathbf{b} \) is orthogonal to \( \mathbf{a} \). ### Step 7: Equate the Two Volumes Now we equate \( V_1 \) and \( V_2 \): \[ |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})| = |(\mathbf{b} \cdot \mathbf{a})| |\mathbf{a} \times \mathbf{b}| \] ### Step 8: Analyze the Result From the equality, we can derive that the scalar triple product must be either \( +1 \) or \( -1 \) (since the magnitudes are equal). Thus, we conclude: \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \pm 1 \] ### Final Result The answer is that the scalar triple product \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \) must equal \( \pm 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

If the volume of the parallelopiped with a, b and c as coterminous edges is 40 cubic units, then the volume of the parallelopiped having b+c, c+a and a+b as coterminous edges in cubic units is

The volume of the parallelopiped, if a=3hati,b=5hatj and c=4hatk are coterminous edges of the parallelopiped is

hata, hatb and hata-hatb are unit vectors. The volume of the parallelopiped, formed with hata, hatb and hata xx hatb as coterminous edges is :

If a+b, b+c and c+a are coterminous edges of a parallel opiped then its volume is

The volume of a parallelopiped whose coterminous edges are 2veca , 2vecb , 2 vec c , is

Volume of parallelopiped determined by vectors vec a,vec b and vec c is 2. Then the volume of the parallelopiped determined by vectors 2(a xx b),3(b xx c) and (c xx a) is

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. Let a, b and c be three non-zero and non-coplanar vectors and p, q and...

    Text Solution

    |

  2. [a xx(3b + 2c), b xx (c-2a), 2c xx (a-3b)] =

    Text Solution

    |

  3. If a, b, c are three non-coplanar vectors such that volume of parallel...

    Text Solution

    |

  4. The edges of a parallelopiped are of unit length and a parallel to non...

    Text Solution

    |

  5. The volume of the tetrahedron whose vertices are points A(1,-1,10), B ...

    Text Solution

    |

  6. Let vec a= vec i- vec k , vec b=x vec i+ vec j+(1-x) vec k and vec c...

    Text Solution

    |

  7. The value of a so that the volume of parallelopiped formed by vectors ...

    Text Solution

    |

  8. Let vecb=-veci+4vecj+6veck, vecc=2veci-7vecj-10veck. If veca be a unit...

    Text Solution

    |

  9. Let a =3i+2k and b=2j+k. If c is a unit vector, then the maximum value...

    Text Solution

    |

  10. Let veca,vecb and vecc be three vectors. Then scalar triple product [v...

    Text Solution

    |

  11. For three vectors vecu,vecv,vecw which of the following expressions is...

    Text Solution

    |

  12. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecbxxvecc))...

    Text Solution

    |

  13. If vecd = gamma(veca xx vecb) + mu(vecb xx vecc) + v(vecc xx veca) and...

    Text Solution

    |

  14. If a, b, c are non-coplanar vectors and r is a unit vector, then |(r....

    Text Solution

    |

  15. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(2)hatj+b(3)hatk and vecc=c(...

    Text Solution

    |

  16. The scalar vec Adot( vec B+ vec C)xx( vec A+ vec B+ vec C) equals 0 b...

    Text Solution

    |

  17. If [(3a + 5b) (c) (d)] = p [acd] + q[bcd], them p + q=

    Text Solution

    |

  18. (a + 2b-c).[(a-b) xx (a-b-c)] is equal to

    Text Solution

    |

  19. If a, b and c three non-coplanar vectors, then (a + b +c). [a+b) xx (a...

    Text Solution

    |

  20. If vec u , vec va n d vec w are three non-cop0lanar vectors, then ...

    Text Solution

    |