Home
Class 12
MATHS
The volume of the tetrahedron whose vert...

The volume of the tetrahedron whose vertices are points `A(1,-1,10), B (-1,-3,7), C(5, -1,lambda), D(7,-4,7)` be 11 cubic units then the value of `lambda` is

A

`-1`

B

1

C

`-7`

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) for the tetrahedron with vertices \( A(1, -1, 10) \), \( B(-1, -3, 7) \), \( C(5, -1, \lambda) \), and \( D(7, -4, 7) \) such that its volume is 11 cubic units, we will use the formula for the volume of a tetrahedron given by: \[ V = \frac{1}{6} | \vec{AB} \cdot (\vec{AC} \times \vec{AD}) | \] ### Step 1: Calculate the vectors \( \vec{AB} \), \( \vec{AC} \), and \( \vec{AD} \) 1. **Calculate \( \vec{AB} \)**: \[ \vec{AB} = B - A = (-1 - 1, -3 - (-1), 7 - 10) = (-2, -2, -3) \] 2. **Calculate \( \vec{AC} \)**: \[ \vec{AC} = C - A = (5 - 1, -1 - (-1), \lambda - 10) = (4, 0, \lambda - 10) \] 3. **Calculate \( \vec{AD} \)**: \[ \vec{AD} = D - A = (7 - 1, -4 - (-1), 7 - 10) = (6, -3, -3) \] ### Step 2: Set up the determinant for the scalar triple product The volume is given by: \[ V = \frac{1}{6} | \vec{AB} \cdot (\vec{AC} \times \vec{AD}) | \] We need to compute the scalar triple product \( \vec{AB} \cdot (\vec{AC} \times \vec{AD}) \). This can be calculated using the determinant: \[ \begin{vmatrix} -2 & -2 & -3 \\ 4 & 0 & \lambda - 10 \\ 6 & -3 & -3 \end{vmatrix} \] ### Step 3: Calculate the determinant Using the determinant formula: \[ \text{Det} = -2 \begin{vmatrix} 0 & \lambda - 10 \\ -3 & -3 \end{vmatrix} + 2 \begin{vmatrix} 4 & \lambda - 10 \\ 6 & -3 \end{vmatrix} - 3 \begin{vmatrix} 4 & 0 \\ 6 & -3 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. **First determinant**: \[ \begin{vmatrix} 0 & \lambda - 10 \\ -3 & -3 \end{vmatrix} = 0 \cdot (-3) - (-3)(\lambda - 10) = 3(\lambda - 10) \] 2. **Second determinant**: \[ \begin{vmatrix} 4 & \lambda - 10 \\ 6 & -3 \end{vmatrix} = 4(-3) - 6(\lambda - 10) = -12 - 6\lambda + 60 = 48 - 6\lambda \] 3. **Third determinant**: \[ \begin{vmatrix} 4 & 0 \\ 6 & -3 \end{vmatrix} = 4(-3) - 0 \cdot 6 = -12 \] Putting it all together: \[ \text{Det} = -2(3(\lambda - 10)) + 2(48 - 6\lambda) - 3(-12) \] \[ = -6(\lambda - 10) + 96 - 12\lambda + 36 \] \[ = -6\lambda + 60 + 96 - 12\lambda + 36 \] \[ = -18\lambda + 192 \] ### Step 4: Set the volume equal to 11 cubic units Since the volume is given as 11 cubic units: \[ \frac{1}{6} |-18\lambda + 192| = 11 \] Multiplying both sides by 6: \[ |-18\lambda + 192| = 66 \] ### Step 5: Solve for \( \lambda \) This gives us two equations: 1. \( -18\lambda + 192 = 66 \) 2. \( -18\lambda + 192 = -66 \) **For the first equation**: \[ -18\lambda = 66 - 192 \] \[ -18\lambda = -126 \implies \lambda = \frac{126}{18} = 7 \] **For the second equation**: \[ -18\lambda = -66 - 192 \] \[ -18\lambda = -258 \implies \lambda = \frac{258}{18} = \frac{43}{3} \] ### Conclusion The possible values for \( \lambda \) are \( 7 \) and \( \frac{43}{3} \).
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

The volume of the tetrahedron whose vertices are A(1,-1,10),B(-1,-3,7),C(5,-1,1) and D(7,-4,7) is

If the volume of the tetrahedron whose vertices are (1,-6,10),(-1,-3,7),(5,-1,lamda) and (7,-4,7) is 11 cubit units then lamda=

The volume of the tetrahedron whose vertices are A(-1, 2, 3), B(3, -2, 1), C(2, 1, 3) and C(-1, -2, 4)

Find the volume of the tetrahedron whose vertices are A(3,7,4),B(5,-2,3)C(-4,5,6) and D(1,2,3).

The volume of the tetrahedron whose vertices are (3, 7, 4), (5, -2, 3), (-4, 5, 6) and (1, 2, 3) are

Whether the points (-1,-6,10) , (1,-3,4) , (-5,-1,1) and (-7,-4,7) form a rhombus

The centroid of the triangle whose vertices are (3, 10), (7, 7), (-2, 1) is

Find the area of the quadrilateral whose vertices are A(1,1),B(3,4),C(5,-2) and D(4,-7)

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If a, b, c are three non-coplanar vectors such that volume of parallel...

    Text Solution

    |

  2. The edges of a parallelopiped are of unit length and a parallel to non...

    Text Solution

    |

  3. The volume of the tetrahedron whose vertices are points A(1,-1,10), B ...

    Text Solution

    |

  4. Let vec a= vec i- vec k , vec b=x vec i+ vec j+(1-x) vec k and vec c...

    Text Solution

    |

  5. The value of a so that the volume of parallelopiped formed by vectors ...

    Text Solution

    |

  6. Let vecb=-veci+4vecj+6veck, vecc=2veci-7vecj-10veck. If veca be a unit...

    Text Solution

    |

  7. Let a =3i+2k and b=2j+k. If c is a unit vector, then the maximum value...

    Text Solution

    |

  8. Let veca,vecb and vecc be three vectors. Then scalar triple product [v...

    Text Solution

    |

  9. For three vectors vecu,vecv,vecw which of the following expressions is...

    Text Solution

    |

  10. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecbxxvecc))...

    Text Solution

    |

  11. If vecd = gamma(veca xx vecb) + mu(vecb xx vecc) + v(vecc xx veca) and...

    Text Solution

    |

  12. If a, b, c are non-coplanar vectors and r is a unit vector, then |(r....

    Text Solution

    |

  13. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(2)hatj+b(3)hatk and vecc=c(...

    Text Solution

    |

  14. The scalar vec Adot( vec B+ vec C)xx( vec A+ vec B+ vec C) equals 0 b...

    Text Solution

    |

  15. If [(3a + 5b) (c) (d)] = p [acd] + q[bcd], them p + q=

    Text Solution

    |

  16. (a + 2b-c).[(a-b) xx (a-b-c)] is equal to

    Text Solution

    |

  17. If a, b and c three non-coplanar vectors, then (a + b +c). [a+b) xx (a...

    Text Solution

    |

  18. If vec u , vec va n d vec w are three non-cop0lanar vectors, then ...

    Text Solution

    |

  19. If vec a , vec ba n d vec c are unit coplanar vectors, then the sc...

    Text Solution

    |

  20. If a,b,c ar enon-coplanar vectors and lamda is a real number, then the...

    Text Solution

    |