Home
Class 12
MATHS
Let a =3i+2k and b=2j+k. If c is a unit ...

Let `a =3i+2k and b=2j+k`. If c is a unit vector, then the maximum value of `[veca,vecb,vecc]` is :

A

`sqrt(59)`

B

`sqrt(61)`

C

`sqrt(108)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the scalar triple product \([ \vec{a}, \vec{b}, \vec{c} ]\), where \(\vec{a} = 3\hat{i} + 2\hat{k}\) and \(\vec{b} = 2\hat{j} + \hat{k}\), and \(\vec{c}\) is a unit vector. ### Step 1: Calculate the Cross Product \(\vec{a} \times \vec{b}\) The scalar triple product can be expressed as: \[ [ \vec{a}, \vec{b}, \vec{c} ] = \vec{a} \times \vec{b} \cdot \vec{c} \] First, we need to find \(\vec{a} \times \vec{b}\). Using the determinant method: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 0 & 2 \\ 0 & 2 & 1 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 0 & 2 \\ 2 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 2 \\ 0 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 0 \\ 0 & 2 \end{vmatrix} \] Calculating the minors: \[ = \hat{i} (0 \cdot 1 - 2 \cdot 2) - \hat{j} (3 \cdot 1 - 0 \cdot 2) + \hat{k} (3 \cdot 2 - 0 \cdot 0) \] \[ = \hat{i} (-4) - \hat{j} (3) + \hat{k} (6) \] \[ = -4\hat{i} - 3\hat{j} + 6\hat{k} \] Thus, we have: \[ \vec{a} \times \vec{b} = -4\hat{i} - 3\hat{j} + 6\hat{k} \] ### Step 2: Calculate the Magnitude of \(\vec{a} \times \vec{b}\) Next, we calculate the magnitude of \(\vec{a} \times \vec{b}\): \[ |\vec{a} \times \vec{b}| = \sqrt{(-4)^2 + (-3)^2 + (6)^2} \] \[ = \sqrt{16 + 9 + 36} = \sqrt{61} \] ### Step 3: Find the Maximum Value of the Scalar Triple Product The maximum value of the scalar triple product is given by: \[ \text{Max}([ \vec{a}, \vec{b}, \vec{c} ]) = |\vec{a} \times \vec{b}| \cdot |\vec{c}| \cdot \cos(\theta) \] Since \(\vec{c}\) is a unit vector, \(|\vec{c}| = 1\) and the maximum value of \(\cos(\theta)\) is 1 when \(\vec{c}\) is in the same direction as \(\vec{a} \times \vec{b}\). Thus, we have: \[ \text{Max}([ \vec{a}, \vec{b}, \vec{c} ]) = |\vec{a} \times \vec{b}| \cdot 1 = \sqrt{61} \] ### Final Answer The maximum value of \([ \vec{a}, \vec{b}, \vec{c} ]\) is \(\sqrt{61}\). ---
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

Let vec b=2hat i+hat j-hat k,vec k=hat i+3hat k, If vec a is a unit vector then find the maximum value of [vec avec bvec cvec c]

Consider two vectors veca=3hati-2hatj+4hatk and vecb=hatj+2hatk. If vecc is a unit vector and k be the maximum value of a.(vecbxxvecc) , then the value of k^(2)-50 is equal to

Let veca = 2i + j -2k, and b = i+ j if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vecc is 30^(@) , then |(veca xx vecb)xx vecc| is equal to

Let veca = 2i + j + k, and b = i+ j if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vec is 30^(@) , then |(veca xx vecb)|xx vecc| is equal to

Let 2veca = vecb xx vecc + 2vecb where veca, vecb and vecc are three unit vectors, then sum of all possible values of |3veca + 4vecb + 5vecc| is

If veca,vecb and vecc are three mutually perpendicular unit vectors and vecd is a unit vector which makes equal angal with veca,vecb and vecc , then find the value of |veca+vecb+vecc+vecd|^(2) .

If veca,vecb and vecc are three mutually perpendicular unit vectors and vecd is a unit vector which makes equal angal with veca,vecb and vecc , then find the value of |veca+vecb+vecc+vecd|^(2) .

Let veca, vecb and vecc be three vectors such that |veca|=2, |vecb|=1 and |vecc|=3. If the projection of vecb along veca is double of the projection of vecc along veca and vecb, vecc are perpendicular to each other, then the value of (|veca-vecb+2vecc|^(2))/(2) is equal to

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. The value of a so that the volume of parallelopiped formed by vectors ...

    Text Solution

    |

  2. Let vecb=-veci+4vecj+6veck, vecc=2veci-7vecj-10veck. If veca be a unit...

    Text Solution

    |

  3. Let a =3i+2k and b=2j+k. If c is a unit vector, then the maximum value...

    Text Solution

    |

  4. Let veca,vecb and vecc be three vectors. Then scalar triple product [v...

    Text Solution

    |

  5. For three vectors vecu,vecv,vecw which of the following expressions is...

    Text Solution

    |

  6. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecbxxvecc))...

    Text Solution

    |

  7. If vecd = gamma(veca xx vecb) + mu(vecb xx vecc) + v(vecc xx veca) and...

    Text Solution

    |

  8. If a, b, c are non-coplanar vectors and r is a unit vector, then |(r....

    Text Solution

    |

  9. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(2)hatj+b(3)hatk and vecc=c(...

    Text Solution

    |

  10. The scalar vec Adot( vec B+ vec C)xx( vec A+ vec B+ vec C) equals 0 b...

    Text Solution

    |

  11. If [(3a + 5b) (c) (d)] = p [acd] + q[bcd], them p + q=

    Text Solution

    |

  12. (a + 2b-c).[(a-b) xx (a-b-c)] is equal to

    Text Solution

    |

  13. If a, b and c three non-coplanar vectors, then (a + b +c). [a+b) xx (a...

    Text Solution

    |

  14. If vec u , vec va n d vec w are three non-cop0lanar vectors, then ...

    Text Solution

    |

  15. If vec a , vec ba n d vec c are unit coplanar vectors, then the sc...

    Text Solution

    |

  16. If a,b,c ar enon-coplanar vectors and lamda is a real number, then the...

    Text Solution

    |

  17. If bara,barb,barc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  18. The resultant of two forces P N and 3 N is a force of 7 N. If the d...

    Text Solution

    |

  19. a =hati+hatj-hatk,b= hati-2hatj+hatk,c=hati-hatj-hatk, then a vector i...

    Text Solution

    |

  20. Let a =i-j,b=j-k,c=k-i. If d is a unit vector such that a.d =0 = [vecb...

    Text Solution

    |