Home
Class 12
MATHS
a =hati+hatj-hatk,b= hati-2hatj+hatk,c=h...

`a =hati+hatj-hatk,b= hati-2hatj+hatk,c=hati-hatj-hatk`, then a vector in plane of a and b whose projection on c is of magnitude `((1)/(sqrt(3)))` is given by :

A

`2hati-3hatj+2hatk`

B

`4hati-7hatj+4hatk`

C

`4hati-2hatj+2hatk`

D

`4hati+13hatj-10hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will find a vector \( \mathbf{U} \) in the plane of vectors \( \mathbf{A} \) and \( \mathbf{B} \) whose projection on vector \( \mathbf{C} \) has a specific magnitude. ### Step 1: Define the vectors Given: \[ \mathbf{A} = \hat{i} + \hat{j} - \hat{k} \] \[ \mathbf{B} = \hat{i} - 2\hat{j} + \hat{k} \] \[ \mathbf{C} = \hat{i} - \hat{j} - \hat{k} \] ### Step 2: Express vector \( \mathbf{U} \) Since \( \mathbf{U} \) is in the plane of \( \mathbf{A} \) and \( \mathbf{B} \), we can express it as: \[ \mathbf{U} = \mu \mathbf{A} + \lambda \mathbf{B} \] Substituting the values of \( \mathbf{A} \) and \( \mathbf{B} \): \[ \mathbf{U} = \mu (\hat{i} + \hat{j} - \hat{k}) + \lambda (\hat{i} - 2\hat{j} + \hat{k}) \] This simplifies to: \[ \mathbf{U} = (\mu + \lambda) \hat{i} + (\mu - 2\lambda) \hat{j} + (\mu + \lambda) \hat{k} \] ### Step 3: Find the projection of \( \mathbf{U} \) on \( \mathbf{C} \) The projection of \( \mathbf{U} \) on \( \mathbf{C} \) is given by: \[ \text{Projection of } \mathbf{U} \text{ on } \mathbf{C} = \frac{\mathbf{U} \cdot \mathbf{C}}{|\mathbf{C}|} \] We need to find \( |\mathbf{C}| \): \[ |\mathbf{C}| = \sqrt{1^2 + (-1)^2 + (-1)^2} = \sqrt{3} \] Thus, the projection becomes: \[ \frac{\mathbf{U} \cdot \mathbf{C}}{\sqrt{3}} = \frac{1}{\sqrt{3}} \] This implies: \[ \mathbf{U} \cdot \mathbf{C} = 1 \] ### Step 4: Calculate \( \mathbf{U} \cdot \mathbf{C} \) Calculating the dot product: \[ \mathbf{U} \cdot \mathbf{C} = (\mu + \lambda) \cdot 1 + (\mu - 2\lambda) \cdot (-1) + (\mu + \lambda) \cdot (-1) \] This simplifies to: \[ \mathbf{U} \cdot \mathbf{C} = \mu + \lambda - \mu + 2\lambda - \mu - \lambda = -\mu + 2\lambda \] Setting this equal to 1: \[ -\mu + 2\lambda = 1 \] ### Step 5: Solve for \( \mu \) and \( \lambda \) Rearranging gives: \[ \mu = 2\lambda - 1 \] ### Step 6: Substitute \( \mu \) into \( \mathbf{U} \) Substituting \( \mu \) back into \( \mathbf{U} \): \[ \mathbf{U} = (2\lambda - 1 + \lambda) \hat{i} + (2\lambda - 1 - 2\lambda) \hat{j} + (2\lambda - 1 + \lambda) \hat{k} \] This simplifies to: \[ \mathbf{U} = (3\lambda - 1)\hat{i} + (-1)\hat{j} + (3\lambda - 1)\hat{k} \] ### Step 7: Set conditions for \( \mathbf{U} \) We can set conditions for \( \mathbf{U} \) to find specific values for \( \lambda \). For example, we can set \( 3\lambda - 1 = 2 \) or \( 3\lambda - 1 = 4 \). ### Step 8: Solve for \( \lambda \) 1. If \( 3\lambda - 1 = 2 \): \[ 3\lambda = 3 \implies \lambda = 1 \] Substituting back gives: \[ \mathbf{U} = (3(1) - 1)\hat{i} + (-1)\hat{j} + (3(1) - 1)\hat{k} = 2\hat{i} - \hat{j} + 2\hat{k} \] 2. If \( 3\lambda - 1 = 4 \): \[ 3\lambda = 5 \implies \lambda = \frac{5}{3} \] Substituting back gives: \[ \mathbf{U} = (3(\frac{5}{3}) - 1)\hat{i} + (-1)\hat{j} + (3(\frac{5}{3}) - 1)\hat{k} = 4\hat{i} - \hat{j} + 4\hat{k} \] ### Final Result Thus, the vector \( \mathbf{U} \) can be either: \[ \mathbf{U} = 2\hat{i} - \hat{j} + 2\hat{k} \quad \text{or} \quad \mathbf{U} = 4\hat{i} - \hat{j} + 4\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

Let veca=hati + 2hatj +hatk, vecb=hati - hatj +hatk and vecc= hati+hatj-hatk A vector in the plane of veca and vecb whose projections on vecc is 1//sqrt3 is

If a=hati+hatj+hatk,b=hati+hatj-hatk , then vectors perpendicular to a and b is/are

Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the pland of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk . A vector in the plane of veca and vecb whose projection on vecc is 1/sqrt(3) is (A) 4hati-hatj+4hatk (B) hati+hatj-3hatk (C) 2hati+hatj-2hatk (D) 4hati+hatj-4hatk

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If bara,barb,barc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  2. The resultant of two forces P N and 3 N is a force of 7 N. If the d...

    Text Solution

    |

  3. a =hati+hatj-hatk,b= hati-2hatj+hatk,c=hati-hatj-hatk, then a vector i...

    Text Solution

    |

  4. Let a =i-j,b=j-k,c=k-i. If d is a unit vector such that a.d =0 = [vecb...

    Text Solution

    |

  5. x,y,z are distinct scalars such that [xa+yb+zc, xb+yc+za, xc+ya+zb] =0...

    Text Solution

    |

  6. If l,j,k are the usual three perpendicular unit vectors then the val...

    Text Solution

    |

  7. Write the value of hat idot( hat jxx hat k)+ hat jdot( hat kxx hat i)...

    Text Solution

    |

  8. If a =i+j-k,b=i-j+k andc=i-j-k then axx(bxxc) =

    Text Solution

    |

  9. If a,b,c be three non-coplanar vectors, then (i) [a-b,b-c,c-a]=

    Text Solution

    |

  10. If A, B, C are three points with position vectors i+j,i-j and p.i+qj+...

    Text Solution

    |

  11. If a = i +j + k, b = 4i + 3j + 4k and c = i + alphaj + betak are linea...

    Text Solution

    |

  12. If a.b = b.c = c.a = 0, then a.(bxxc)=

    Text Solution

    |

  13. For non-coplanar vectors a, b and c, abs((a times b)*c)=abs(a) abs(b) ...

    Text Solution

    |

  14. If x=3i-6j-k, y=i+4j-3k" and "z=3i-4j-12k, then the magnitude of the p...

    Text Solution

    |

  15. IF a,b,c are non-coplanar vectors, then |{:(a.a,,a.b.,,a.c),(b.a,,b....

    Text Solution

    |

  16. a,b,c are unit vectors such that aand b are mutualy perpendicular and ...

    Text Solution

    |

  17. If a,b and c are three non-coplanar vectors, then the scalar product o...

    Text Solution

    |

  18. If a, b and c are non-zero vectors such that a times b=c, b times c=a ...

    Text Solution

    |

  19. a =2i-j+k, b=i+2j-3k, c=3i+lambdaj+5k and if these vectors be coplanar...

    Text Solution

    |

  20. The position vectors of the points A,B,C,D are vec(3i)-vec(2j)-veck, v...

    Text Solution

    |