Home
Class 12
MATHS
Let a =i-j,b=j-k,c=k-i. If d is a unit v...

Let `a =i-j,b=j-k,c=k-i`. If d is a unit vector such that` a.d =0 = [vecb,vecc,vecd]` then d equals

A

`pm(k+j-2k)//sqrt(6)`

B

`pm(i+j-k)//sqrt(3)`

C

`pm(i+j+k)//sqrt(3)`

D

`pmk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given conditions and properties of vectors. ### Step 1: Define the vectors We have the following vectors: - \( \vec{a} = \hat{i} - \hat{j} \) - \( \vec{b} = \hat{j} - \hat{k} \) - \( \vec{c} = \hat{k} - \hat{i} \) ### Step 2: Understand the conditions We are given that: 1. \( \vec{a} \cdot \vec{d} = 0 \) (which means \( \vec{d} \) is perpendicular to \( \vec{a} \)) 2. The scalar triple product \( [\vec{b}, \vec{c}, \vec{d}] = 0 \) (which means \( \vec{b}, \vec{c}, \vec{d} \) are coplanar) ### Step 3: Express \( \vec{d} \) in terms of \( \vec{b} \) and \( \vec{c} \) Since \( \vec{b}, \vec{c}, \vec{d} \) are coplanar, we can express \( \vec{d} \) as: \[ \vec{d} = \vec{b} + \lambda \vec{c} \] where \( \lambda \) is a scalar. ### Step 4: Substitute the vectors Substituting the expressions for \( \vec{b} \) and \( \vec{c} \): \[ \vec{d} = (\hat{j} - \hat{k}) + \lambda (\hat{k} - \hat{i}) \] This simplifies to: \[ \vec{d} = -\lambda \hat{i} + \hat{j} + (\lambda - 1) \hat{k} \] ### Step 5: Use the condition \( \vec{a} \cdot \vec{d} = 0 \) Now we compute the dot product: \[ \vec{a} \cdot \vec{d} = (\hat{i} - \hat{j}) \cdot (-\lambda \hat{i} + \hat{j} + (\lambda - 1) \hat{k}) \] Calculating this gives: \[ -\lambda (\hat{i} \cdot \hat{i}) + (-1)(\hat{j} \cdot \hat{j}) + 0 = -\lambda - 1 \] Setting this equal to zero: \[ -\lambda - 1 = 0 \] Thus, we find: \[ \lambda = -1 \] ### Step 6: Substitute \( \lambda \) back into \( \vec{d} \) Substituting \( \lambda = -1 \) into the expression for \( \vec{d} \): \[ \vec{d} = -(-1) \hat{i} + \hat{j} + (-1 - 1) \hat{k} = \hat{i} + \hat{j} - 2\hat{k} \] ### Step 7: Find the unit vector To find the unit vector \( \hat{d} \): \[ \hat{d} = \frac{\vec{d}}{|\vec{d}|} \] First, we calculate the magnitude of \( \vec{d} \): \[ |\vec{d}| = \sqrt{(1)^2 + (1)^2 + (-2)^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] Thus, the unit vector is: \[ \hat{d} = \frac{1}{\sqrt{6}}(\hat{i} + \hat{j} - 2\hat{k}) \] ### Final Answer The unit vector \( \hat{d} \) is: \[ \hat{d} = \frac{1}{\sqrt{6}}(\hat{i} + \hat{j} - 2\hat{k}) \] ---
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

Let vec a= hat i- hat j , vec b= hat j- hat ka n d vec c= hat k- hat i. If vec d is a unit vector such that vec a.vec d=0=[ vec b vec c vec d], then d equals a. +-( hat i+ hat j-2 hat k)/(sqrt(6)) b. +-( hat i+ hat j- hat k)/(sqrt(3)) c. +-( hat i+ hat j+ hat k)/(sqrt(3)) d. +- hat k

vec a=hat i-hat j;vec b=hat j-hat k;vec c=hat k-hat i. If vec d is a unit vector such that vec a*vec d=0=[vec bvec cvec d] then vec d is equal to :

Let : bara = i - j, barb = j - k, barc = k - i If bard is a unit vector such that bara. bard = 0 = [barb barc bard] , then : bard =

Let veca = 2i + j -2k, and b = i+ j if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vecc is 30^(@) , then |(veca xx vecb)xx vecc| is equal to

Let veca = 2i + j + k, and b = i+ j if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vec is 30^(@) , then |(veca xx vecb)|xx vecc| is equal to

If veca,vecb,vecc are unity vectors such that vecd=lamdaveca+muvecb+gammavecc then gamma is equal to (A) ([veca vecb vecc])/([vecb veca vecc]) (B) ([vecb vecc vecd])/([vecb vecc veca]) (C) ([vecb vecd vecc])/([veca vecb vecc]) (D) ([vecc vecb vecd])/([veca vecb vecc])

Let a = i- 2j + k and b = i-j+k be two vectors. If c is a vector such that b x c = b x a and c.a = 0, then c . b is equal to:

If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(veccxxvecd)=1 and veca.vecc=1/2 then (A) veca,vecb,vecc are non coplanar (B) vecb,vecc, vecd are non coplanar (C) vecb, vecd are non paralel (D) veca, vecd are paralel and vecb, vecc are parallel

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. The resultant of two forces P N and 3 N is a force of 7 N. If the d...

    Text Solution

    |

  2. a =hati+hatj-hatk,b= hati-2hatj+hatk,c=hati-hatj-hatk, then a vector i...

    Text Solution

    |

  3. Let a =i-j,b=j-k,c=k-i. If d is a unit vector such that a.d =0 = [vecb...

    Text Solution

    |

  4. x,y,z are distinct scalars such that [xa+yb+zc, xb+yc+za, xc+ya+zb] =0...

    Text Solution

    |

  5. If l,j,k are the usual three perpendicular unit vectors then the val...

    Text Solution

    |

  6. Write the value of hat idot( hat jxx hat k)+ hat jdot( hat kxx hat i)...

    Text Solution

    |

  7. If a =i+j-k,b=i-j+k andc=i-j-k then axx(bxxc) =

    Text Solution

    |

  8. If a,b,c be three non-coplanar vectors, then (i) [a-b,b-c,c-a]=

    Text Solution

    |

  9. If A, B, C are three points with position vectors i+j,i-j and p.i+qj+...

    Text Solution

    |

  10. If a = i +j + k, b = 4i + 3j + 4k and c = i + alphaj + betak are linea...

    Text Solution

    |

  11. If a.b = b.c = c.a = 0, then a.(bxxc)=

    Text Solution

    |

  12. For non-coplanar vectors a, b and c, abs((a times b)*c)=abs(a) abs(b) ...

    Text Solution

    |

  13. If x=3i-6j-k, y=i+4j-3k" and "z=3i-4j-12k, then the magnitude of the p...

    Text Solution

    |

  14. IF a,b,c are non-coplanar vectors, then |{:(a.a,,a.b.,,a.c),(b.a,,b....

    Text Solution

    |

  15. a,b,c are unit vectors such that aand b are mutualy perpendicular and ...

    Text Solution

    |

  16. If a,b and c are three non-coplanar vectors, then the scalar product o...

    Text Solution

    |

  17. If a, b and c are non-zero vectors such that a times b=c, b times c=a ...

    Text Solution

    |

  18. a =2i-j+k, b=i+2j-3k, c=3i+lambdaj+5k and if these vectors be coplanar...

    Text Solution

    |

  19. The position vectors of the points A,B,C,D are vec(3i)-vec(2j)-veck, v...

    Text Solution

    |

  20. The value of lambda for which the points L(1,0,3), M(-1,3,4),N(1,2,1) ...

    Text Solution

    |