Home
Class 12
MATHS
If a,b,c be three non-coplanar vectors,...

If a,b,c be three non-coplanar vectors, then
`(i) [a-b,b-c,c-a]=`

A

`[abc]`

B

`2[abc]`

C

0

D

`[abc]^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the scalar triple product of the vectors \( (a-b), (b-c), (c-a) \). The scalar triple product of three vectors \( \mathbf{u}, \mathbf{v}, \mathbf{w} \) is given by \( \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \). ### Step-by-step Solution: 1. **Identify the vectors:** We have three vectors: - \( \mathbf{u} = \mathbf{a} - \mathbf{b} \) - \( \mathbf{v} = \mathbf{b} - \mathbf{c} \) - \( \mathbf{w} = \mathbf{c} - \mathbf{a} \) 2. **Write the scalar triple product:** The scalar triple product can be expressed as: \[ [\mathbf{u}, \mathbf{v}, \mathbf{w}] = (\mathbf{a} - \mathbf{b}) \cdot ((\mathbf{b} - \mathbf{c}) \times (\mathbf{c} - \mathbf{a})) \] 3. **Calculate the cross product:** We need to compute \( (\mathbf{b} - \mathbf{c}) \times (\mathbf{c} - \mathbf{a}) \): \[ (\mathbf{b} - \mathbf{c}) \times (\mathbf{c} - \mathbf{a}) = \mathbf{b} \times \mathbf{c} - \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{a} - \mathbf{c} \times \mathbf{c} \] Since \( \mathbf{c} \times \mathbf{c} = \mathbf{0} \), this simplifies to: \[ \mathbf{b} \times \mathbf{c} - \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{a} \] 4. **Substitute back into the scalar triple product:** Now substitute the result of the cross product back into the scalar triple product: \[ [\mathbf{u}, \mathbf{v}, \mathbf{w}] = (\mathbf{a} - \mathbf{b}) \cdot [(\mathbf{b} \times \mathbf{c}) - (\mathbf{b} \times \mathbf{a}) + (\mathbf{c} \times \mathbf{a})] \] 5. **Distribute the dot product:** Distributing the dot product: \[ = (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{b} \times \mathbf{c}) - (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{b} \times \mathbf{a}) + (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{a}) \] 6. **Evaluate each term:** - The first term \( (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{b} \times \mathbf{c}) \) gives us \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) - \mathbf{b} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \) (the second term is zero). - The second term \( -(\mathbf{a} - \mathbf{b}) \cdot (\mathbf{b} \times \mathbf{a}) = -(\mathbf{a} \cdot (\mathbf{b} \times \mathbf{a}) - \mathbf{b} \cdot (\mathbf{b} \times \mathbf{a})) \) results in zero since \( \mathbf{b} \times \mathbf{a} \) is perpendicular to \( \mathbf{b} \). - The third term \( (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{a} \cdot (\mathbf{c} \times \mathbf{a}) - \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) \) also results in zero for the first part. 7. **Final result:** Therefore, the scalar triple product simplifies to: \[ [\mathbf{a} - \mathbf{b}, \mathbf{b} - \mathbf{c}, \mathbf{c} - \mathbf{a}] = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) - 0 + 0 = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \] ### Conclusion: The scalar triple product \( [\mathbf{a} - \mathbf{b}, \mathbf{b} - \mathbf{c}, \mathbf{c} - \mathbf{a}] \) equals \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \).
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are three non-coplanar vectors, then 3a-7b-4c,3a-2b+c and a+b+lamdac will be coplanar, if lamda is

If a,b,c are three non-coplanar vector, then the vectors equation r = (1 -p-q) a +p b +qc respesents a

Suppose a, b, c are three non-coplanar vectors, then ((a+b+c)*((a+c) times(a+b)))/([a b c])="______"

If a, b and c are three non-coplanar vectors, then find the value of (a*(btimesc))/(ctimes(a*b))+(b*(ctimesa))/(c*(atimesb)) .

If the points P(a+2b+c),Q(2a+3b),R(b+tc) are collinear,where a,b,c are three non-coplanar vectors,the value of t is

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. Write the value of hat idot( hat jxx hat k)+ hat jdot( hat kxx hat i)...

    Text Solution

    |

  2. If a =i+j-k,b=i-j+k andc=i-j-k then axx(bxxc) =

    Text Solution

    |

  3. If a,b,c be three non-coplanar vectors, then (i) [a-b,b-c,c-a]=

    Text Solution

    |

  4. If A, B, C are three points with position vectors i+j,i-j and p.i+qj+...

    Text Solution

    |

  5. If a = i +j + k, b = 4i + 3j + 4k and c = i + alphaj + betak are linea...

    Text Solution

    |

  6. If a.b = b.c = c.a = 0, then a.(bxxc)=

    Text Solution

    |

  7. For non-coplanar vectors a, b and c, abs((a times b)*c)=abs(a) abs(b) ...

    Text Solution

    |

  8. If x=3i-6j-k, y=i+4j-3k" and "z=3i-4j-12k, then the magnitude of the p...

    Text Solution

    |

  9. IF a,b,c are non-coplanar vectors, then |{:(a.a,,a.b.,,a.c),(b.a,,b....

    Text Solution

    |

  10. a,b,c are unit vectors such that aand b are mutualy perpendicular and ...

    Text Solution

    |

  11. If a,b and c are three non-coplanar vectors, then the scalar product o...

    Text Solution

    |

  12. If a, b and c are non-zero vectors such that a times b=c, b times c=a ...

    Text Solution

    |

  13. a =2i-j+k, b=i+2j-3k, c=3i+lambdaj+5k and if these vectors be coplanar...

    Text Solution

    |

  14. The position vectors of the points A,B,C,D are vec(3i)-vec(2j)-veck, v...

    Text Solution

    |

  15. The value of lambda for which the points L(1,0,3), M(-1,3,4),N(1,2,1) ...

    Text Solution

    |

  16. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  17. IF r.a = 0, r. b = 0 and r. c= 0 for some non-zero vector r. Then, the...

    Text Solution

    |

  18. If a, b,c are non-coplanar vectors such that r.a = r.b = r.c =0, then

    Text Solution

    |

  19. Blank,

    Text Solution

    |

  20. If |[a, b, c], [a^(2), b^(2), c^(2)], [a^(3)+1, b^(3)+1, c^(2)+1]|=0 a...

    Text Solution

    |