Home
Class 12
MATHS
a =2i-j+k, b=i+2j-3k, c=3i+lambdaj+5k an...

`a =2i-j+k, b=i+2j-3k, c=3i+lambdaj+5k` and if these vectors be coplanar, then `lambda` is

A

4

B

6

C

`-4`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) such that the vectors \( \mathbf{a} = 2\mathbf{i} - \mathbf{j} + \mathbf{k} \), \( \mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k} \), and \( \mathbf{c} = 3\mathbf{i} + \lambda \mathbf{j} + 5\mathbf{k} \) are coplanar, we can use the condition that the scalar triple product of the vectors must equal zero. ### Step-by-Step Solution: 1. **Understanding Coplanarity**: Vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c} \) are coplanar if the scalar triple product \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0 \). 2. **Calculate \( \mathbf{b} \times \mathbf{c} \)**: We will first calculate the cross product \( \mathbf{b} \times \mathbf{c} \). The cross product can be calculated using the determinant of a matrix formed by the unit vectors and the components of the vectors. \[ \mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -3 \\ 3 & \lambda & 5 \end{vmatrix} \] 3. **Expanding the Determinant**: We will expand this determinant using the first row: \[ \mathbf{b} \times \mathbf{c} = \mathbf{i} \begin{vmatrix} 2 & -3 \\ \lambda & 5 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & -3 \\ 3 & 5 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 2 \\ 3 & \lambda \end{vmatrix} \] - For \( \mathbf{i} \): \[ = \mathbf{i} (2 \cdot 5 - (-3) \cdot \lambda) = \mathbf{i} (10 + 3\lambda) \] - For \( \mathbf{j} \): \[ = -\mathbf{j} (1 \cdot 5 - (-3) \cdot 3) = -\mathbf{j} (5 + 9) = -14\mathbf{j} \] - For \( \mathbf{k} \): \[ = \mathbf{k} (1 \cdot \lambda - 2 \cdot 3) = \mathbf{k} (\lambda - 6) \] Combining these, we get: \[ \mathbf{b} \times \mathbf{c} = (10 + 3\lambda) \mathbf{i} - 14 \mathbf{j} + (\lambda - 6) \mathbf{k} \] 4. **Calculate \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \)**: Now we compute the dot product of \( \mathbf{a} \) with \( \mathbf{b} \times \mathbf{c} \): \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (2\mathbf{i} - \mathbf{j} + \mathbf{k}) \cdot ((10 + 3\lambda) \mathbf{i} - 14 \mathbf{j} + (\lambda - 6) \mathbf{k}) \] Expanding this: \[ = 2(10 + 3\lambda) - 1(-14) + 1(\lambda - 6) \] \[ = 20 + 6\lambda + 14 + \lambda - 6 \] \[ = 28 + 7\lambda \] 5. **Setting the Scalar Triple Product to Zero**: For coplanarity, we set the scalar triple product equal to zero: \[ 28 + 7\lambda = 0 \] 6. **Solving for \( \lambda \)**: \[ 7\lambda = -28 \] \[ \lambda = -4 \] ### Final Answer: The value of \( \lambda \) is \( -4 \).
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

If three vector 2vec i-vec j-vec k,vec i+2vec j-3vec k,3vec i+lambdavec j+5vec k are coplanar then the value of lambda is :

If vectors 2i - j + k, i + 2j - 3k and 3i + mj + 5k are coplanar, then m is a root of the equation

If the points whose position vectors are 3i-2j-k,2i+3j-4k,-i+j+2k and 4i+5j+lambda k lie on a plane then lambda is equal to (A)-(146)/(17) (B) (146)/(17) (C) -(17)/(146) (D) (17)/(146)

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If a,b and c are three non-coplanar vectors, then the scalar product o...

    Text Solution

    |

  2. If a, b and c are non-zero vectors such that a times b=c, b times c=a ...

    Text Solution

    |

  3. a =2i-j+k, b=i+2j-3k, c=3i+lambdaj+5k and if these vectors be coplanar...

    Text Solution

    |

  4. The position vectors of the points A,B,C,D are vec(3i)-vec(2j)-veck, v...

    Text Solution

    |

  5. The value of lambda for which the points L(1,0,3), M(-1,3,4),N(1,2,1) ...

    Text Solution

    |

  6. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  7. IF r.a = 0, r. b = 0 and r. c= 0 for some non-zero vector r. Then, the...

    Text Solution

    |

  8. If a, b,c are non-coplanar vectors such that r.a = r.b = r.c =0, then

    Text Solution

    |

  9. Blank,

    Text Solution

    |

  10. If |[a, b, c], [a^(2), b^(2), c^(2)], [a^(3)+1, b^(3)+1, c^(2)+1]|=0 a...

    Text Solution

    |

  11. If the vectors ai + j + k , i + bj + k and i + j + ck, where a, b, c n...

    Text Solution

    |

  12. Another form (1+a)/(1-a) + (1+b)/(1-b) + (1 +c)/(1-c) =

    Text Solution

    |

  13. If the vectors ai +j + k , i-bj+k, i+j-ck are co-planar, then abc + 2 ...

    Text Solution

    |

  14. If the vector ai+j+k,i+bj+k and i+j+ck are coplanar, then :

    Text Solution

    |

  15. Let a,b,c be distinct non-negative numbers. If the vectors ahati+ahatj...

    Text Solution

    |

  16. If veca , vecb , vec c are any three coplanar unit vectors , then :

    Text Solution

    |

  17. If veca, vecb, vecc are three non-coplanar mutually perpendicular unit...

    Text Solution

    |

  18. The vector vec(a) lies in the plane of vectors vec(b) and vec(c). Whi...

    Text Solution

    |

  19. If a = i-j+k,b=i-2j-k and c=3i+pj+5k are coplanar, then p =

    Text Solution

    |

  20. If l( b xx c) + m(c xxa) + n(a xx b) = 0 and at least one of l, m, n i...

    Text Solution

    |