Home
Class 12
MATHS
The value of lambda for which the points...

The value of `lambda` for which the points `L(1,0,3), M(-1,3,4),N(1,2,1) and P(lambda,2,5)` are coplanar is

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) for which the points \( L(1,0,3) \), \( M(-1,3,4) \), \( N(1,2,1) \), and \( P(\lambda,2,5) \) are coplanar, we can use the concept of vectors and the scalar triple product. Here’s a step-by-step solution: ### Step 1: Define the Vectors We first need to find the vectors \( \vec{LM} \), \( \vec{LN} \), and \( \vec{LP} \). - The vector \( \vec{LM} \) is calculated as: \[ \vec{LM} = M - L = (-1 - 1, 3 - 0, 4 - 3) = (-2, 3, 1) \] - The vector \( \vec{LN} \) is calculated as: \[ \vec{LN} = N - L = (1 - 1, 2 - 0, 1 - 3) = (0, 2, -2) \] - The vector \( \vec{LP} \) is calculated as: \[ \vec{LP} = P - L = (\lambda - 1, 2 - 0, 5 - 3) = (\lambda - 1, 2, 2) \] ### Step 2: Set Up the Scalar Triple Product The points are coplanar if the scalar triple product of the vectors \( \vec{LM} \), \( \vec{LN} \), and \( \vec{LP} \) is zero: \[ \vec{LM} \cdot (\vec{LN} \times \vec{LP}) = 0 \] ### Step 3: Calculate the Cross Product \( \vec{LN} \times \vec{LP} \) We can find the cross product using the determinant: \[ \vec{LN} \times \vec{LP} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 2 & -2 \\ \lambda - 1 & 2 & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 2 & -2 \\ 2 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & -2 \\ \lambda - 1 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & 2 \\ \lambda - 1 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ 2 \cdot 2 - (-2) \cdot 2 = 4 + 4 = 8 \] 2. For \( \hat{j} \): \[ 0 \cdot 2 - (-2)(\lambda - 1) = 0 + 2(\lambda - 1) = 2\lambda - 2 \] 3. For \( \hat{k} \): \[ 0 \cdot 2 - 2(\lambda - 1) = -2(\lambda - 1) = -2\lambda + 2 \] Thus, we have: \[ \vec{LN} \times \vec{LP} = (8, -(2\lambda - 2), -2\lambda + 2) = (8, -2\lambda + 2, -2\lambda + 2) \] ### Step 4: Calculate the Dot Product Now we take the dot product with \( \vec{LM} \): \[ \vec{LM} \cdot (\vec{LN} \times \vec{LP}) = (-2, 3, 1) \cdot (8, -2\lambda + 2, -2\lambda + 2) \] Calculating this: \[ = -2 \cdot 8 + 3 \cdot (-2\lambda + 2) + 1 \cdot (-2\lambda + 2) \] \[ = -16 + 3(-2\lambda + 2) - 2\lambda + 2 \] \[ = -16 - 6\lambda + 6 - 2\lambda + 2 \] \[ = -16 + 8 - 8\lambda = -8 - 8\lambda \] ### Step 5: Set the Dot Product to Zero For coplanarity, we set the dot product to zero: \[ -8 - 8\lambda = 0 \] Solving for \( \lambda \): \[ -8\lambda = 8 \implies \lambda = -1 \] ### Final Answer The value of \( \lambda \) for which the points are coplanar is: \[ \lambda = -1 \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

The value of k for which the points A (1, 0, 3), B(-1, 3, 4), C(1, 2, 1) and D(k, 2, 5) are coplanar, are

Find the value of lambda or which the points A(2,5,1) ,B(1,2,-1) and C(3, lambda ,3) are collinear .

Find lambda for which the points A(3,2,1),B(4,lambda,5),C(4,2,-2) and D(6,5,-1) are coplanar.

If points (0,0,9),(1,1,8),(1,2,7)a n d(2,2,lambda) are coplanar, then lambda=

The points (3,6,9), (1,2,3), (2,3,4) and (4,6,lambda) are coplanar if lambda =_______.

Find the value of lambda . If the points A(-1,3,2), B(-4,2,-2) and C(5,lambda,10) are collinear.

The value of lambda for which the points (-2,4,lambda),(3,-6,-8),(1,-2,-2) are collinear is

Using vectors,find the value of lambda such that the points (lambda,-10,3),(1,-1,3) and (3,5,3) are collinear.

Using vectors find the value of lambda such that the points (lambda,-10,3),(1,-1,3) and (3,5,3) are collinear

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. a =2i-j+k, b=i+2j-3k, c=3i+lambdaj+5k and if these vectors be coplanar...

    Text Solution

    |

  2. The position vectors of the points A,B,C,D are vec(3i)-vec(2j)-veck, v...

    Text Solution

    |

  3. The value of lambda for which the points L(1,0,3), M(-1,3,4),N(1,2,1) ...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. IF r.a = 0, r. b = 0 and r. c= 0 for some non-zero vector r. Then, the...

    Text Solution

    |

  6. If a, b,c are non-coplanar vectors such that r.a = r.b = r.c =0, then

    Text Solution

    |

  7. Blank,

    Text Solution

    |

  8. If |[a, b, c], [a^(2), b^(2), c^(2)], [a^(3)+1, b^(3)+1, c^(2)+1]|=0 a...

    Text Solution

    |

  9. If the vectors ai + j + k , i + bj + k and i + j + ck, where a, b, c n...

    Text Solution

    |

  10. Another form (1+a)/(1-a) + (1+b)/(1-b) + (1 +c)/(1-c) =

    Text Solution

    |

  11. If the vectors ai +j + k , i-bj+k, i+j-ck are co-planar, then abc + 2 ...

    Text Solution

    |

  12. If the vector ai+j+k,i+bj+k and i+j+ck are coplanar, then :

    Text Solution

    |

  13. Let a,b,c be distinct non-negative numbers. If the vectors ahati+ahatj...

    Text Solution

    |

  14. If veca , vecb , vec c are any three coplanar unit vectors , then :

    Text Solution

    |

  15. If veca, vecb, vecc are three non-coplanar mutually perpendicular unit...

    Text Solution

    |

  16. The vector vec(a) lies in the plane of vectors vec(b) and vec(c). Whi...

    Text Solution

    |

  17. If a = i-j+k,b=i-2j-k and c=3i+pj+5k are coplanar, then p =

    Text Solution

    |

  18. If l( b xx c) + m(c xxa) + n(a xx b) = 0 and at least one of l, m, n i...

    Text Solution

    |

  19. The vectors (x,x+1,x+2),(x+3,x+3,x+5) and (x+6,x+7,x+8) are coplanar f...

    Text Solution

    |

  20. If the vectors, a,b,c are coplanar, then

    Text Solution

    |