Home
Class 12
MATHS
The unit vector which is orthogonal to a...

The unit vector which is orthogonal to `a =3i+2j+6k` and coplanar with `b = 2i+j+k and c =i-j+k` is

A

`(6i-5k)/(sqrt(61))`

B

`(3j-k)/(sqrt(10))`

C

`(2i-5j)/(sqrt(29))`

D

`(2i+j-2k)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector that is orthogonal to the vector \( \mathbf{a} = 3\mathbf{i} + 2\mathbf{j} + 6\mathbf{k} \) and coplanar with the vectors \( \mathbf{b} = 2\mathbf{i} + \mathbf{j} + \mathbf{k} \) and \( \mathbf{c} = \mathbf{i} - \mathbf{j} + \mathbf{k} \), we can follow these steps: ### Step 1: Define the coplanar vector Let the required vector be \( \mathbf{r} \). Since \( \mathbf{r} \) is coplanar with \( \mathbf{b} \) and \( \mathbf{c} \), we can express \( \mathbf{r} \) as a linear combination of \( \mathbf{b} \) and \( \mathbf{c} \): \[ \mathbf{r} = \lambda \mathbf{b} + \mu \mathbf{c} \] Substituting the values of \( \mathbf{b} \) and \( \mathbf{c} \): \[ \mathbf{r} = \lambda (2\mathbf{i} + \mathbf{j} + \mathbf{k}) + \mu (\mathbf{i} - \mathbf{j} + \mathbf{k}) \] \[ \mathbf{r} = (2\lambda + \mu)\mathbf{i} + (\lambda - \mu)\mathbf{j} + (\lambda + \mu)\mathbf{k} \] ### Step 2: Set up the orthogonality condition Since \( \mathbf{r} \) is orthogonal to \( \mathbf{a} \), their dot product must equal zero: \[ \mathbf{a} \cdot \mathbf{r} = 0 \] Calculating the dot product: \[ (3\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}) \cdot ((2\lambda + \mu)\mathbf{i} + (\lambda - \mu)\mathbf{j} + (\lambda + \mu)\mathbf{k}) = 0 \] This expands to: \[ 3(2\lambda + \mu) + 2(\lambda - \mu) + 6(\lambda + \mu) = 0 \] Simplifying this: \[ 6\lambda + 3\mu + 2\lambda - 2\mu + 6\lambda + 6\mu = 0 \] Combining like terms: \[ (6\lambda + 2\lambda + 6\lambda) + (3\mu - 2\mu + 6\mu) = 0 \] \[ 14\lambda + 7\mu = 0 \] ### Step 3: Solve for \( \mu \) in terms of \( \lambda \) From the equation \( 14\lambda + 7\mu = 0 \), we can express \( \mu \) as: \[ \mu = -2\lambda \] ### Step 4: Substitute \( \mu \) back into \( \mathbf{r} \) Substituting \( \mu = -2\lambda \) into the expression for \( \mathbf{r} \): \[ \mathbf{r} = (2\lambda - 2\lambda)\mathbf{i} + (\lambda + 2\lambda)\mathbf{j} + (\lambda - 2\lambda)\mathbf{k} \] This simplifies to: \[ \mathbf{r} = 0\mathbf{i} + 3\lambda\mathbf{j} - \lambda\mathbf{k} \] Thus, \[ \mathbf{r} = \lambda(0\mathbf{i} + 3\mathbf{j} - \mathbf{k}) \] ### Step 5: Find the unit vector To find the unit vector, we need to compute the magnitude of \( \mathbf{r} \): \[ |\mathbf{r}| = \sqrt{(0)^2 + (3\lambda)^2 + (-\lambda)^2} = \sqrt{9\lambda^2 + \lambda^2} = \sqrt{10\lambda^2} = \sqrt{10}|\lambda| \] The unit vector \( \mathbf{u} \) in the direction of \( \mathbf{r} \) is given by: \[ \mathbf{u} = \frac{\mathbf{r}}{|\mathbf{r}|} = \frac{\lambda(0\mathbf{i} + 3\mathbf{j} - \mathbf{k})}{\sqrt{10}|\lambda|} = \frac{1}{\sqrt{10}}(0\mathbf{i} + 3\mathbf{j} - \mathbf{k}) \] Thus, the unit vector is: \[ \mathbf{u} = \frac{3}{\sqrt{10}}\mathbf{j} - \frac{1}{\sqrt{10}}\mathbf{k} \] ### Final Answer: The unit vector which is orthogonal to \( \mathbf{a} \) and coplanar with \( \mathbf{b} \) and \( \mathbf{c} \) is: \[ \mathbf{u} = \frac{3}{\sqrt{10}}\mathbf{j} - \frac{1}{\sqrt{10}}\mathbf{k} \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

The unit vector which is orthogonal to the vector 5i+2j+6k and is coplanar with the vectors 2i+j+k" and "i-j+k is

The unit vector which is orthogonal to the vector 3vec i+2vec j+6vec k and is coplanar with the vector 2i+j+k and i-j+k

The unit vector which is orthogonal to the vector 3hat i+2hat j+6hat k and is coplanar with the vectors 2hat i+hat j+hat k and hat i-hat j+hat k is

The unit vector which is orthogonal to the vector 5hat j+2hat j+6hat k and is coplanar with vectors 2hat i+hat j+hat k and hat i-hat j+hat k is (2hat i-6hat j+hat k)/(sqrt(41)) b.(2hat i-3hat jmath)/(sqrt(13)) c.(3hat i-hat k)/(sqrt(10))d.(4hat i+3hat jmath-3hat k)/(sqrt(34))

A unit vector c perpendicular to a=i-j and coplanar with a and b=i+k is

A unit vector c perpendicular to a and coplanar with a and b, a=i+j+k, b=i+2j is given by

If vectors i + j + k,i - j+k and 2i + 3j + mk are coplanar, then m =

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. The vector r = a xx(b xxc) is

    Text Solution

    |

  2. Given, two vectors are hati - hatj and hati + 2hatj, the unit vector c...

    Text Solution

    |

  3. The unit vector which is orthogonal to a =3i+2j+6k and coplanar with b...

    Text Solution

    |

  4. If a = (-1,1,1) and b = (2,0,1) then the vector r satisfying the condi...

    Text Solution

    |

  5. If a, b, c are three unit vectors such that a xx (b xx c) = (1)/(2)b ...

    Text Solution

    |

  6. If vec a , vec ba n d vec c are non-coplanar unit vectors such tha...

    Text Solution

    |

  7. If a is perpendicular to b and c, then

    Text Solution

    |

  8. If a vector veca is expressed as the sum of two vectors vec(alpha) and...

    Text Solution

    |

  9. u = a xx (b xx c) + b xx ( c xx a) + c xx ( a xx b) , then

    Text Solution

    |

  10. If u = i xx (a xx i), + j xx (a xx j) + k xx(a xx k), then

    Text Solution

    |

  11. If a = i+j+k and b=i-j then the vectors (a.i)i+(a.j)j+(a.k)k, (b...

    Text Solution

    |

  12. [abi]i+[abj]j+[abk]k is a equal to

    Text Solution

    |

  13. The vector hati xx [(axxb) xx hati] + hatj xx [(axxb)xxhatj ] + hat...

    Text Solution

    |

  14. If a xx b = c, b xx c= a and a,b,c be moduli of the vector a, b,c res...

    Text Solution

    |

  15. Vector (b xx c) xx (c xx a) is a vector

    Text Solution

    |

  16. If (a xx b) xx c = a xx (bxx c), then

    Text Solution

    |

  17. If (veca xx vecb) xx vecc = vec a xx (vecb xx vecc), where veca, vecb ...

    Text Solution

    |

  18. [a " " b " " axx b] is equal to

    Text Solution

    |

  19. a xx [ a xx (a xx b)] equals

    Text Solution

    |

  20. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |