Home
Class 12
MATHS
If a = i+j+k and b=i-j then the vectors ...

If `a = i+j+k and b=i-j` then the vectors
`(a.i)i+(a.j)j+(a.k)k, `
`(b.i)+(b.j)j+(b.k)k, and i+j-2k`

A

are mutually perpendicular

B

are coplanar

C

form a parallelopiped of volume 6 units

D

form a parallelopiped of volume 3 units

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vectors \( R_1 \), \( R_2 \), and \( R_3 \) based on the given vectors \( \mathbf{a} \) and \( \mathbf{b} \), and then determine their relationships (mutually perpendicular, coplanar, etc.). ### Step 1: Define the vectors Given: \[ \mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k} \] \[ \mathbf{b} = \mathbf{i} - \mathbf{j} \] ### Step 2: Calculate \( R_1 \) The first vector \( R_1 \) is defined as: \[ R_1 = (a_i)\mathbf{i} + (a_j)\mathbf{j} + (a_k)\mathbf{k} \] Where \( a_i, a_j, a_k \) are the components of vector \( \mathbf{a} \). From \( \mathbf{a} \): - \( a_i = 1 \) - \( a_j = 1 \) - \( a_k = 1 \) Thus, \[ R_1 = 1\mathbf{i} + 1\mathbf{j} + 1\mathbf{k} = \mathbf{i} + \mathbf{j} + \mathbf{k} \] ### Step 3: Calculate \( R_2 \) The second vector \( R_2 \) is defined as: \[ R_2 = (b_i)\mathbf{i} + (b_j)\mathbf{j} + (b_k)\mathbf{k} \] Where \( b_i, b_j, b_k \) are the components of vector \( \mathbf{b} \). From \( \mathbf{b} \): - \( b_i = 1 \) - \( b_j = -1 \) - \( b_k = 0 \) Thus, \[ R_2 = 1\mathbf{i} - 1\mathbf{j} + 0\mathbf{k} = \mathbf{i} - \mathbf{j} \] ### Step 4: Define \( R_3 \) The third vector \( R_3 \) is given as: \[ R_3 = \mathbf{i} + \mathbf{j} - 2\mathbf{k} \] ### Step 5: Check for mutual perpendicularity To check if the vectors \( R_1 \), \( R_2 \), and \( R_3 \) are mutually perpendicular, we need to calculate the dot products: 1. **Calculate \( R_1 \cdot R_2 \)**: \[ R_1 \cdot R_2 = (\mathbf{i} + \mathbf{j} + \mathbf{k}) \cdot (\mathbf{i} - \mathbf{j}) = 1 \cdot 1 + 1 \cdot (-1) + 1 \cdot 0 = 1 - 1 + 0 = 0 \] 2. **Calculate \( R_1 \cdot R_3 \)**: \[ R_1 \cdot R_3 = (\mathbf{i} + \mathbf{j} + \mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} - 2\mathbf{k}) = 1 \cdot 1 + 1 \cdot 1 + 1 \cdot (-2) = 1 + 1 - 2 = 0 \] 3. **Calculate \( R_2 \cdot R_3 \)**: \[ R_2 \cdot R_3 = (\mathbf{i} - \mathbf{j}) \cdot (\mathbf{i} + \mathbf{j} - 2\mathbf{k}) = 1 \cdot 1 + (-1) \cdot 1 + 0 \cdot (-2) = 1 - 1 + 0 = 0 \] Since all dot products are zero, the vectors \( R_1 \), \( R_2 \), and \( R_3 \) are mutually perpendicular. ### Step 6: Check for coplanarity Vectors are coplanar if the scalar triple product is zero. Since \( R_1 \), \( R_2 \), and \( R_3 \) are mutually perpendicular, they cannot be coplanar. ### Step 7: Calculate the volume of the parallelepiped The volume \( V \) of the parallelepiped formed by the vectors can be calculated using the scalar triple product: \[ V = |R_1 \cdot (R_2 \times R_3)| \] First, calculate \( R_2 \times R_3 \): \[ R_2 \times R_3 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 0 \\ 1 & 1 & -2 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i}((-1)(-2) - (0)(1)) - \mathbf{j}(1 \cdot (-2) - 0 \cdot 1) + \mathbf{k}(1 \cdot 1 - (-1) \cdot 1) \] \[ = \mathbf{i}(2) - \mathbf{j}(-2) + \mathbf{k}(1 + 1) \] \[ = 2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k} \] Now calculate \( R_1 \cdot (R_2 \times R_3) \): \[ R_1 \cdot (R_2 \times R_3) = (\mathbf{i} + \mathbf{j} + \mathbf{k}) \cdot (2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 2 + 2 + 2 = 6 \] Thus, the volume of the parallelepiped is \( 6 \). ### Conclusion The vectors \( R_1 \), \( R_2 \), and \( R_3 \) are mutually perpendicular and the volume of the parallelepiped formed by them is \( 6 \).
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

If a=i+j+k" and "b=i-j+2k then the projection of a on b is given by

The angle between the vectors i-j+k and -i+j+2k is

A=4i+4j-4k and B=3i+j4k , then angle between vectors A and B is

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. u = a xx (b xx c) + b xx ( c xx a) + c xx ( a xx b) , then

    Text Solution

    |

  2. If u = i xx (a xx i), + j xx (a xx j) + k xx(a xx k), then

    Text Solution

    |

  3. If a = i+j+k and b=i-j then the vectors (a.i)i+(a.j)j+(a.k)k, (b...

    Text Solution

    |

  4. [abi]i+[abj]j+[abk]k is a equal to

    Text Solution

    |

  5. The vector hati xx [(axxb) xx hati] + hatj xx [(axxb)xxhatj ] + hat...

    Text Solution

    |

  6. If a xx b = c, b xx c= a and a,b,c be moduli of the vector a, b,c res...

    Text Solution

    |

  7. Vector (b xx c) xx (c xx a) is a vector

    Text Solution

    |

  8. If (a xx b) xx c = a xx (bxx c), then

    Text Solution

    |

  9. If (veca xx vecb) xx vecc = vec a xx (vecb xx vecc), where veca, vecb ...

    Text Solution

    |

  10. [a " " b " " axx b] is equal to

    Text Solution

    |

  11. a xx [ a xx (a xx b)] equals

    Text Solution

    |

  12. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |

  13. If |a|=2a n d|b|=3 and adotb=0,t h e n(axx(axx(axx(axxb)))) is equal t...

    Text Solution

    |

  14. [a " " b " "axxb] +[a.b]^(2) =

    Text Solution

    |

  15. If a = 1,2,4, b =2,-3,-1, c=1,4-4, then the vector a xx(b xxc) is orth...

    Text Solution

    |

  16. The magnitudes of vectors vec a , vec b and vec c are respectively 1...

    Text Solution

    |

  17. For non-coplanar vectors a, b and c, abs((a times b)*c)=abs(a) abs(b) ...

    Text Solution

    |

  18. Let veca = 2i + j + k, and b = i+ j if c is a vector such that veca ....

    Text Solution

    |

  19. Let a =2i+j-2k and b=i+j. If c is a vector such that a.c = |c|,|c-a| =...

    Text Solution

    |

  20. Let the unit vectors a and b be perpendicular and the unit vector c be...

    Text Solution

    |