Home
Class 12
MATHS
The vector hati xx [(axxb) xx hati] +...

The vector
`hati xx [(axxb) xx hati] + hatj xx [(axxb)xxhatj ] + hatk xx [(axxb) xxhatk]` is equal

A

`2( axxb)`

B

b

C

`(a.b)b`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the vector expression \[ \hat{i} \times [(a \times b) \times \hat{i}] + \hat{j} \times [(a \times b) \times \hat{j}] + \hat{k} \times [(a \times b) \times \hat{k}] \] we will use the vector triple product identity, which states: \[ \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w} \] ### Step 1: Break down each term using the vector triple product identity. For the first term, we have: \[ \hat{i} \times [(a \times b) \times \hat{i}] \] Using the identity: \[ \hat{i} \times [(a \times b) \times \hat{i}] = (\hat{i} \cdot \hat{i}) (a \times b) - (\hat{i} \cdot (a \times b)) \hat{i} \] Since \(\hat{i} \cdot \hat{i} = 1\), this simplifies to: \[ = (a \times b) - (\hat{i} \cdot (a \times b)) \hat{i} \] ### Step 2: Calculate the second term. For the second term: \[ \hat{j} \times [(a \times b) \times \hat{j}] \] Using the identity again: \[ \hat{j} \times [(a \times b) \times \hat{j}] = (\hat{j} \cdot \hat{j}) (a \times b) - (\hat{j} \cdot (a \times b)) \hat{j} \] Since \(\hat{j} \cdot \hat{j} = 1\), this simplifies to: \[ = (a \times b) - (\hat{j} \cdot (a \times b)) \hat{j} \] ### Step 3: Calculate the third term. For the third term: \[ \hat{k} \times [(a \times b) \times \hat{k}] \] Using the identity: \[ \hat{k} \times [(a \times b) \times \hat{k}] = (\hat{k} \cdot \hat{k}) (a \times b) - (\hat{k} \cdot (a \times b)) \hat{k} \] Since \(\hat{k} \cdot \hat{k} = 1\), this simplifies to: \[ = (a \times b) - (\hat{k} \cdot (a \times b)) \hat{k} \] ### Step 4: Combine all terms. Now, we combine all three terms: \[ \hat{i} \times [(a \times b) \times \hat{i}] + \hat{j} \times [(a \times b) \times \hat{j}] + \hat{k} \times [(a \times b) \times \hat{k}] \] This gives: \[ [(a \times b) - (\hat{i} \cdot (a \times b)) \hat{i}] + [(a \times b) - (\hat{j} \cdot (a \times b)) \hat{j}] + [(a \times b) - (\hat{k} \cdot (a \times b)) \hat{k}] \] ### Step 5: Simplify the expression. Combining the like terms, we have: \[ 3(a \times b) - [(\hat{i} \cdot (a \times b)) \hat{i} + (\hat{j} \cdot (a \times b)) \hat{j} + (\hat{k} \cdot (a \times b)) \hat{k}] \] Let \(c = a \times b\), then: \[ = 3c - (c \cdot \hat{i}) \hat{i} - (c \cdot \hat{j}) \hat{j} - (c \cdot \hat{k}) \hat{k} \] ### Step 6: Final Result. The expression simplifies to: \[ = 2(a \times b) \] Thus, the final answer is: \[ \boxed{2(a \times b)} \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

a xx [axx(axxb)] is equal to

What is hati . ( hatj xx hatk) ?

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

If veca=2hati+hatj+2hatk then the value of |hati xx(veca xxhati)|^2+|hatj xx(veca xx hatj)|^2+|hatk xx(veca xx hatk)|^2 is

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If a = i+j+k and b=i-j then the vectors (a.i)i+(a.j)j+(a.k)k, (b...

    Text Solution

    |

  2. [abi]i+[abj]j+[abk]k is a equal to

    Text Solution

    |

  3. The vector hati xx [(axxb) xx hati] + hatj xx [(axxb)xxhatj ] + hat...

    Text Solution

    |

  4. If a xx b = c, b xx c= a and a,b,c be moduli of the vector a, b,c res...

    Text Solution

    |

  5. Vector (b xx c) xx (c xx a) is a vector

    Text Solution

    |

  6. If (a xx b) xx c = a xx (bxx c), then

    Text Solution

    |

  7. If (veca xx vecb) xx vecc = vec a xx (vecb xx vecc), where veca, vecb ...

    Text Solution

    |

  8. [a " " b " " axx b] is equal to

    Text Solution

    |

  9. a xx [ a xx (a xx b)] equals

    Text Solution

    |

  10. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |

  11. If |a|=2a n d|b|=3 and adotb=0,t h e n(axx(axx(axx(axxb)))) is equal t...

    Text Solution

    |

  12. [a " " b " "axxb] +[a.b]^(2) =

    Text Solution

    |

  13. If a = 1,2,4, b =2,-3,-1, c=1,4-4, then the vector a xx(b xxc) is orth...

    Text Solution

    |

  14. The magnitudes of vectors vec a , vec b and vec c are respectively 1...

    Text Solution

    |

  15. For non-coplanar vectors a, b and c, abs((a times b)*c)=abs(a) abs(b) ...

    Text Solution

    |

  16. Let veca = 2i + j + k, and b = i+ j if c is a vector such that veca ....

    Text Solution

    |

  17. Let a =2i+j-2k and b=i+j. If c is a vector such that a.c = |c|,|c-a| =...

    Text Solution

    |

  18. Let the unit vectors a and b be perpendicular and the unit vector c be...

    Text Solution

    |

  19. The equation of the plane containing the line vecr= veca + k vecb and ...

    Text Solution

    |

  20. ( axxb) xx (a xxc ).d equals

    Text Solution

    |