Home
Class 12
MATHS
[a " " b " " axx b] is equal to...

`[a " " b " " axx b]` is equal to

A

`a^(2)b^(2)`

B

`(a.b)^(2)`

C

`(a xxb)^(2)`

D

`|axxb|^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem `[a " " b " " axx b]`, we need to evaluate the scalar triple product of the vectors \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{a} \times \mathbf{b} \). ### Step-by-Step Solution: 1. **Understanding the Scalar Triple Product**: The scalar triple product of three vectors \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) is defined as: \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \] In our case, we have \( \mathbf{c} = \mathbf{a} \times \mathbf{b} \). Therefore, we need to evaluate: \[ \mathbf{a} \cdot (\mathbf{b} \times (\mathbf{a} \times \mathbf{b})) \] 2. **Using the Vector Triple Product Identity**: We can simplify \( \mathbf{b} \times (\mathbf{a} \times \mathbf{b}) \) using the vector triple product identity: \[ \mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z}) \mathbf{y} - (\mathbf{x} \cdot \mathbf{y}) \mathbf{z} \] Here, let \( \mathbf{x} = \mathbf{b} \), \( \mathbf{y} = \mathbf{a} \), and \( \mathbf{z} = \mathbf{b} \). Thus: \[ \mathbf{b} \times (\mathbf{a} \times \mathbf{b}) = (\mathbf{b} \cdot \mathbf{b}) \mathbf{a} - (\mathbf{b} \cdot \mathbf{a}) \mathbf{b} \] Since \( \mathbf{b} \cdot \mathbf{b} = |\mathbf{b}|^2 \), we can rewrite this as: \[ |\mathbf{b}|^2 \mathbf{a} - (\mathbf{b} \cdot \mathbf{a}) \mathbf{b} \] 3. **Substituting Back**: Now we substitute this back into our scalar triple product: \[ \mathbf{a} \cdot \left( |\mathbf{b}|^2 \mathbf{a} - (\mathbf{b} \cdot \mathbf{a}) \mathbf{b} \right) \] This expands to: \[ |\mathbf{b}|^2 (\mathbf{a} \cdot \mathbf{a}) - (\mathbf{b} \cdot \mathbf{a})(\mathbf{a} \cdot \mathbf{b}) \] 4. **Using the Dot Product**: We know that \( \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \) and \( \mathbf{b} \cdot \mathbf{a} = \mathbf{a} \cdot \mathbf{b} \). Thus, we can simplify our expression to: \[ |\mathbf{b}|^2 |\mathbf{a}|^2 - (\mathbf{a} \cdot \mathbf{b})^2 \] 5. **Final Result**: Therefore, the final result of the scalar triple product \( [\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}] \) is: \[ |\mathbf{a}|^2 |\mathbf{b}|^2 - (\mathbf{a} \cdot \mathbf{b})^2 \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

a xx [axx(axxb)] is equal to

If 2a+3b+c=0, " then " axx b +b xx c+c xx a is equal to

If vec a and vec b are orthogonal unit vectors, then for a vector vec r noncoplanar with vec a and vec b , vector rxxa is equal to a. [ vec r vec a vec b] vec b-( vec r. vec b)( vec bxx vec a) b. [ vec r vec a vec b]( vec a+ vec b) c. [ vec r vec a vec b] vec a-( vec r. vec a) vec axx vec b d. none of these

If vec a, vec b, vec c are three non-coplanar vectors represented by concurrent edges of a parallelopiped of volume 4, (vec a + vec b) + (vec bxx vec c) + (vec b + vec c). ( vec c xx vec a) + (vec c + vec a). (vec axx vec b) is equal to

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If (a xx b) xx c = a xx (bxx c), then

    Text Solution

    |

  2. If (veca xx vecb) xx vecc = vec a xx (vecb xx vecc), where veca, vecb ...

    Text Solution

    |

  3. [a " " b " " axx b] is equal to

    Text Solution

    |

  4. a xx [ a xx (a xx b)] equals

    Text Solution

    |

  5. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |

  6. If |a|=2a n d|b|=3 and adotb=0,t h e n(axx(axx(axx(axxb)))) is equal t...

    Text Solution

    |

  7. [a " " b " "axxb] +[a.b]^(2) =

    Text Solution

    |

  8. If a = 1,2,4, b =2,-3,-1, c=1,4-4, then the vector a xx(b xxc) is orth...

    Text Solution

    |

  9. The magnitudes of vectors vec a , vec b and vec c are respectively 1...

    Text Solution

    |

  10. For non-coplanar vectors a, b and c, abs((a times b)*c)=abs(a) abs(b) ...

    Text Solution

    |

  11. Let veca = 2i + j + k, and b = i+ j if c is a vector such that veca ....

    Text Solution

    |

  12. Let a =2i+j-2k and b=i+j. If c is a vector such that a.c = |c|,|c-a| =...

    Text Solution

    |

  13. Let the unit vectors a and b be perpendicular and the unit vector c be...

    Text Solution

    |

  14. The equation of the plane containing the line vecr= veca + k vecb and ...

    Text Solution

    |

  15. ( axxb) xx (a xxc ).d equals

    Text Solution

    |

  16. If a,b,c and d be four vectors, then (a xxb). (c xx d) + ( b xx c) . ...

    Text Solution

    |

  17. If the non-zero vectors a and b are perpendicular to each other, then ...

    Text Solution

    |

  18. Let veda,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  19. Let a,b,c be any threee non zero non-coplanar vectors, then any vecto...

    Text Solution

    |

  20. If a,b,c and p,q,r are reciprocal systemm of vectors, then axxp+bxxq+c...

    Text Solution

    |