Home
Class 12
MATHS
If a = 1,2,4, b =2,-3,-1, c=1,4-4, then ...

If `a = 1,2,4, b =2,-3,-1, c=1,4-4`, then the vector `a xx(b xxc)` is orthogonal to

A

a

B

b

C

c

D

`a+b+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \) and determine which vector it is orthogonal to. ### Step 1: Define the vectors Given: - \( \mathbf{a} = (1, 2, 4) \) - \( \mathbf{b} = (2, -3, -1) \) - \( \mathbf{c} = (1, 4, -4) \) ### Step 2: Calculate the cross product \( \mathbf{b} \times \mathbf{c} \) Using the formula for the cross product: \[ \mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & -1 \\ 1 & 4 & -4 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \begin{vmatrix} -3 & -1 \\ 4 & -4 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 2 & -1 \\ 1 & -4 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} -3 & -1 \\ 4 & -4 \end{vmatrix} = (-3)(-4) - (-1)(4) = 12 + 4 = 16 \) 2. \( \begin{vmatrix} 2 & -1 \\ 1 & -4 \end{vmatrix} = (2)(-4) - (-1)(1) = -8 + 1 = -7 \) 3. \( \begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} = (2)(4) - (-3)(1) = 8 + 3 = 11 \) Putting it all together: \[ \mathbf{b} \times \mathbf{c} = 16\mathbf{i} + 7\mathbf{j} + 11\mathbf{k} = (16, 7, 11) \] ### Step 3: Calculate \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \) Now we calculate \( \mathbf{a} \times (16, 7, 11) \): \[ \mathbf{a} \times (16, 7, 11) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 4 \\ 16 & 7 & 11 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \begin{vmatrix} 2 & 4 \\ 7 & 11 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 4 \\ 16 & 11 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 2 \\ 16 & 7 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 4 \\ 7 & 11 \end{vmatrix} = (2)(11) - (4)(7) = 22 - 28 = -6 \) 2. \( \begin{vmatrix} 1 & 4 \\ 16 & 11 \end{vmatrix} = (1)(11) - (4)(16) = 11 - 64 = -53 \) 3. \( \begin{vmatrix} 1 & 2 \\ 16 & 7 \end{vmatrix} = (1)(7) - (2)(16) = 7 - 32 = -25 \) Putting it all together: \[ \mathbf{a} \times (16, 7, 11) = -6\mathbf{i} + 53\mathbf{j} - 25\mathbf{k} = (-6, 53, -25) \] ### Step 4: Determine orthogonality A vector \( \mathbf{v} \) is orthogonal to another vector \( \mathbf{u} \) if their dot product is zero: \[ \mathbf{u} \cdot \mathbf{v} = 0 \] To find the vectors that are orthogonal to \( (-6, 53, -25) \), we can check the dot product with the original vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c} \). ### Step 5: Check orthogonality with \( \mathbf{a} \) \[ \mathbf{a} \cdot (-6, 53, -25) = 1(-6) + 2(53) + 4(-25) = -6 + 106 - 100 = 0 \] Thus, \( \mathbf{a} \) is orthogonal to \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \). ### Conclusion The vector \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \) is orthogonal to \( \mathbf{a} \). ---
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

If A = {1,2,4}, B = {2,4,5} , C = {2,5} , then (A - C ) xx (B - C) is equal to

If A = {1,2,4}, B= {2,4,5}, C= {2,5}, then (A-B) xx(B-C)=

If A = {1, 2, 3, 4}, B = {3, 4, 5} and C = {1, 4, 5} then the value of A - (B - C) is

If A = {1, 2, 3, 4}, B = {3, 4, 5} and C = {1, 4, 5} then the value of A – (B nn C) is

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |

  2. If |a|=2a n d|b|=3 and adotb=0,t h e n(axx(axx(axx(axxb)))) is equal t...

    Text Solution

    |

  3. [a " " b " "axxb] +[a.b]^(2) =

    Text Solution

    |

  4. If a = 1,2,4, b =2,-3,-1, c=1,4-4, then the vector a xx(b xxc) is orth...

    Text Solution

    |

  5. The magnitudes of vectors vec a , vec b and vec c are respectively 1...

    Text Solution

    |

  6. For non-coplanar vectors a, b and c, abs((a times b)*c)=abs(a) abs(b) ...

    Text Solution

    |

  7. Let veca = 2i + j + k, and b = i+ j if c is a vector such that veca ....

    Text Solution

    |

  8. Let a =2i+j-2k and b=i+j. If c is a vector such that a.c = |c|,|c-a| =...

    Text Solution

    |

  9. Let the unit vectors a and b be perpendicular and the unit vector c be...

    Text Solution

    |

  10. The equation of the plane containing the line vecr= veca + k vecb and ...

    Text Solution

    |

  11. ( axxb) xx (a xxc ).d equals

    Text Solution

    |

  12. If a,b,c and d be four vectors, then (a xxb). (c xx d) + ( b xx c) . ...

    Text Solution

    |

  13. If the non-zero vectors a and b are perpendicular to each other, then ...

    Text Solution

    |

  14. Let veda,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. Let a,b,c be any threee non zero non-coplanar vectors, then any vecto...

    Text Solution

    |

  16. If a,b,c and p,q,r are reciprocal systemm of vectors, then axxp+bxxq+c...

    Text Solution

    |

  17. If a.(b xx c) = 3 then

    Text Solution

    |

  18. Let a,b,c be three non-coplanar vectors and r be any vector in space s...

    Text Solution

    |

  19. Unit vector vecc is inclined at an angle theta to unit vectors ve...

    Text Solution

    |

  20. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |