Home
Class 12
MATHS
Let a =2i+j-2k and b=i+j. If c is a vect...

Let `a =2i+j-2k and b=i+j`. If c is a vector such that `a.c = |c|,|c-a| =2sqrt(2)` and the angle between `(a xxb)` and c. is `30^(@)`, then `|( axx b) xx c| =`

A

`i-j+k`

B

`2j-k`

C

`3/2`

D

2i

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given conditions and compute the required values systematically. ### Given: - \( \mathbf{a} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k} \) - \( \mathbf{b} = \mathbf{i} + \mathbf{j} \) - Conditions: 1. \( \mathbf{a} \cdot \mathbf{c} = |\mathbf{c}| \) 2. \( |\mathbf{c} - \mathbf{a}| = 2\sqrt{2} \) 3. The angle between \( \mathbf{a} \times \mathbf{b} \) and \( \mathbf{c} \) is \( 30^\circ \) ### Step 1: Calculate \( \mathbf{a} \times \mathbf{b} \) To find \( \mathbf{a} \times \mathbf{b} \), we use the determinant method: \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & -2 \\ 1 & 1 & 0 \end{vmatrix} \] Calculating the determinant: \[ \mathbf{a} \times \mathbf{b} = \mathbf{i} \begin{vmatrix} 1 & -2 \\ 1 & 0 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 2 & -2 \\ 1 & 0 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} \] Calculating the minors: - For \( \mathbf{i} \): \( 1 \cdot 0 - (-2) \cdot 1 = 2 \) - For \( \mathbf{j} \): \( 2 \cdot 0 - (-2) \cdot 1 = 2 \) - For \( \mathbf{k} \): \( 2 \cdot 1 - 1 \cdot 1 = 1 \) Thus, \[ \mathbf{a} \times \mathbf{b} = 2\mathbf{i} - 2\mathbf{j} + 1\mathbf{k} = 2\mathbf{i} - 2\mathbf{j} + \mathbf{k} \] ### Step 2: Calculate the magnitude of \( \mathbf{a} \times \mathbf{b} \) \[ |\mathbf{a} \times \mathbf{b}| = \sqrt{(2)^2 + (-2)^2 + (1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] ### Step 3: Find \( |\mathbf{c}| \) From the condition \( \mathbf{a} \cdot \mathbf{c} = |\mathbf{c}| \), we can denote \( |\mathbf{c}| = k \). Thus, we have: \[ \mathbf{a} \cdot \mathbf{c} = k \] ### Step 4: Use the second condition From the condition \( |\mathbf{c} - \mathbf{a}| = 2\sqrt{2} \): \[ |\mathbf{c} - \mathbf{a}|^2 = (2\sqrt{2})^2 = 8 \] Expanding \( |\mathbf{c} - \mathbf{a}|^2 \): \[ |\mathbf{c}|^2 + |\mathbf{a}|^2 - 2\mathbf{a} \cdot \mathbf{c} = 8 \] Substituting \( |\mathbf{c}| = k \) and \( |\mathbf{a}|^2 = 9 \): \[ k^2 + 9 - 2k = 8 \] Rearranging gives: \[ k^2 - 2k + 1 = 0 \implies (k - 1)^2 = 0 \implies k = 1 \] Thus, \( |\mathbf{c}| = 1 \). ### Step 5: Use the angle condition The angle between \( \mathbf{a} \times \mathbf{b} \) and \( \mathbf{c} \) is \( 30^\circ \). Therefore, \[ |\mathbf{a} \times \mathbf{b}| \cdot |\mathbf{c}| \cdot \sin(30^\circ) = |\mathbf{a} \times \mathbf{b} \times \mathbf{c}| \] Substituting the known values: \[ 3 \cdot 1 \cdot \frac{1}{2} = |\mathbf{a} \times \mathbf{b} \times \mathbf{c}| \] Thus, \[ |\mathbf{a} \times \mathbf{b} \times \mathbf{c}| = \frac{3}{2} \] ### Final Answer: \[ |\mathbf{(a \times b) \times c}| = \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

Let veca = 2i + j -2k, and b = i+ j if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vecc is 30^(@) , then |(veca xx vecb)xx vecc| is equal to

Let veca = 2i + j + k, and b = i+ j if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vec is 30^(@) , then |(veca xx vecb)|xx vecc| is equal to

Let vec a=2hat i+hat j-2hat k,vec b=hat i+hat j. If vec c is a vector such that vec a*vec c=|vec c|,|vec c-vec a|=2sqrt(2) and the angle between vec a xxvec b and vec c is 30^(@), then |(vec a xxvec b)xxvec c| equals :

Let vec a=2i+j-2ka n d vec b=i+jdot If vec c is a vector such that vec adot vec c=| vec c|,| vec c- vec a|=2sqrt(2) between vec axx vec b and vec ci s30^0,t h e n|( vec axx vec b)xx vec c| I equal to 2//3 b. 3//2"" c. 2 d. 3

Let a= 2hat(i)+ hat(j) -2hat(k) , b=hat(i) +hat(j) and c be a vectors such that |c-a| =3, |(axxb)xx c|=3 and the angle between c and axx b" is "30^(@) . Then a. c is equal to

Let a = i- 2j + k and b = i-j+k be two vectors. If c is a vector such that b x c = b x a and c.a = 0, then c . b is equal to:

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |

  2. If |a|=2a n d|b|=3 and adotb=0,t h e n(axx(axx(axx(axxb)))) is equal t...

    Text Solution

    |

  3. [a " " b " "axxb] +[a.b]^(2) =

    Text Solution

    |

  4. If a = 1,2,4, b =2,-3,-1, c=1,4-4, then the vector a xx(b xxc) is orth...

    Text Solution

    |

  5. The magnitudes of vectors vec a , vec b and vec c are respectively 1...

    Text Solution

    |

  6. For non-coplanar vectors a, b and c, abs((a times b)*c)=abs(a) abs(b) ...

    Text Solution

    |

  7. Let veca = 2i + j + k, and b = i+ j if c is a vector such that veca ....

    Text Solution

    |

  8. Let a =2i+j-2k and b=i+j. If c is a vector such that a.c = |c|,|c-a| =...

    Text Solution

    |

  9. Let the unit vectors a and b be perpendicular and the unit vector c be...

    Text Solution

    |

  10. The equation of the plane containing the line vecr= veca + k vecb and ...

    Text Solution

    |

  11. ( axxb) xx (a xxc ).d equals

    Text Solution

    |

  12. If a,b,c and d be four vectors, then (a xxb). (c xx d) + ( b xx c) . ...

    Text Solution

    |

  13. If the non-zero vectors a and b are perpendicular to each other, then ...

    Text Solution

    |

  14. Let veda,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. Let a,b,c be any threee non zero non-coplanar vectors, then any vecto...

    Text Solution

    |

  16. If a,b,c and p,q,r are reciprocal systemm of vectors, then axxp+bxxq+c...

    Text Solution

    |

  17. If a.(b xx c) = 3 then

    Text Solution

    |

  18. Let a,b,c be three non-coplanar vectors and r be any vector in space s...

    Text Solution

    |

  19. Unit vector vecc is inclined at an angle theta to unit vectors ve...

    Text Solution

    |

  20. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |