Home
Class 12
MATHS
Let a,b,c be any threee non zero non-co...

Let a,b,c be any threee non zero non-coplanar vectors, then any vector `r` is equal to where
`x=[[[vecr,vecb, vecc]]]/[[[veca ,vecb, vecc]]], y=[[[vecr ,vecc, veca]]]/[[[veca, vecb ,vecc]]], z=[[[vecr, veca ,vecb]]]/[[[veca, vecb, vecc]]]`

A

`za + xb + yc`

B

`xa + yb + zc`

C

`ya + zb + xc`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the vector \( \mathbf{r} \) in terms of the non-coplanar vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c} \). The given equations for \( x, y, z \) are: \[ x = \frac{[\mathbf{r}, \mathbf{b}, \mathbf{c}]}{[\mathbf{a}, \mathbf{b}, \mathbf{c}]}, \quad y = \frac{[\mathbf{r}, \mathbf{c}, \mathbf{a}]}{[\mathbf{a}, \mathbf{b}, \mathbf{c}]}, \quad z = \frac{[\mathbf{r}, \mathbf{a}, \mathbf{b}]}{[\mathbf{a}, \mathbf{b}, \mathbf{c}]} \] Where \( [\mathbf{u}, \mathbf{v}, \mathbf{w}] \) denotes the scalar triple product of the vectors \( \mathbf{u}, \mathbf{v}, \mathbf{w} \). ### Step-by-Step Solution: 1. **Assume a Linear Combination**: Since \( \mathbf{a}, \mathbf{b}, \mathbf{c} \) are non-coplanar, we can express \( \mathbf{r} \) as a linear combination of these vectors: \[ \mathbf{r} = r_1 \mathbf{a} + r_2 \mathbf{b} + r_3 \mathbf{c} \] 2. **Dot Product with \( \mathbf{b} \times \mathbf{c} \)**: Taking the dot product of \( \mathbf{r} \) with \( \mathbf{b} \times \mathbf{c} \): \[ \mathbf{r} \cdot (\mathbf{b} \times \mathbf{c}) = (r_1 \mathbf{a} + r_2 \mathbf{b} + r_3 \mathbf{c}) \cdot (\mathbf{b} \times \mathbf{c}) \] Using properties of the dot product, we know: \[ \mathbf{b} \cdot (\mathbf{b} \times \mathbf{c}) = 0 \quad \text{and} \quad \mathbf{c} \cdot (\mathbf{b} \times \mathbf{c}) = 0 \] Thus, we have: \[ \mathbf{r} \cdot (\mathbf{b} \times \mathbf{c}) = r_1 (\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})) = r_1 [\mathbf{a}, \mathbf{b}, \mathbf{c}] \] 3. **Express \( r_1 \)**: From the above, we can express \( r_1 \): \[ r_1 = \frac{\mathbf{r} \cdot (\mathbf{b} \times \mathbf{c})}{[\mathbf{a}, \mathbf{b}, \mathbf{c}]} = x \] 4. **Repeat for \( r_2 \) and \( r_3 \)**: Similarly, we can find \( r_2 \) and \( r_3 \) by taking the dot products with \( \mathbf{c} \times \mathbf{a} \) and \( \mathbf{a} \times \mathbf{b} \) respectively: \[ r_2 = \frac{\mathbf{r} \cdot (\mathbf{c} \times \mathbf{a})}{[\mathbf{a}, \mathbf{b}, \mathbf{c}]} = y \] \[ r_3 = \frac{\mathbf{r} \cdot (\mathbf{a} \times \mathbf{b})}{[\mathbf{a}, \mathbf{b}, \mathbf{c}]} = z \] 5. **Final Expression for \( \mathbf{r} \)**: Therefore, we can express \( \mathbf{r} \) as: \[ \mathbf{r} = x \mathbf{a} + y \mathbf{b} + z \mathbf{c} \] ### Summary: The vector \( \mathbf{r} \) can be expressed as a linear combination of the non-coplanar vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c} \) using the coefficients \( x, y, z \) derived from the scalar triple products.
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

veca,vecb and vecc are three non-coplanar vectors and r is any arbitrary vector. Prove that [[vecb, vecc,vec r]]veca + [[vecc, veca, vecr]]vecb +[[veca,vec b,vec r]]vecc = [[veca,vec b, vecc]]vecr

Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr be the vectors defined by the relations. vecp=(vecbxxvecc)/([(veca, vecb, vecc)]),vecq=(veccxxveca)/([(veca, vecb, vecc)]),vecr=(veccxxveca)/([(veca,vecb,vecc)]) Then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr is equal to

If veca, vecb, vecc are three non-zero non-null vectors are vecr is any vector in space then [(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb+[(veca, vecb, vecr)]vecc is equal to

If veca,vecb and vecc are non coplnar and non zero vectors and vecr is any vector in space then [vecc vecr vecb]veca+pveca vecr vecc] vecb+[vecb vecr veca]c= (A) [veca vecb vecc] (B) [veca vecb vecc]vecr (C) vecr/([veca vecb vecc]) (D) vecr.(veca+vecb+vecc)

Show that the plane through the points veca,vecb,vecc has the equation [vecr vecb vecc]+[vecr vecc veca]+[vecr veca vecb]=[veca vecb vecc]

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 7vec+6vecc, veca+vecb+vec, 2veca-vecb+vecc, vec-vecb-vecc

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |

  2. If |a|=2a n d|b|=3 and adotb=0,t h e n(axx(axx(axx(axxb)))) is equal t...

    Text Solution

    |

  3. [a " " b " "axxb] +[a.b]^(2) =

    Text Solution

    |

  4. If a = 1,2,4, b =2,-3,-1, c=1,4-4, then the vector a xx(b xxc) is orth...

    Text Solution

    |

  5. The magnitudes of vectors vec a , vec b and vec c are respectively 1...

    Text Solution

    |

  6. For non-coplanar vectors a, b and c, abs((a times b)*c)=abs(a) abs(b) ...

    Text Solution

    |

  7. Let veca = 2i + j + k, and b = i+ j if c is a vector such that veca ....

    Text Solution

    |

  8. Let a =2i+j-2k and b=i+j. If c is a vector such that a.c = |c|,|c-a| =...

    Text Solution

    |

  9. Let the unit vectors a and b be perpendicular and the unit vector c be...

    Text Solution

    |

  10. The equation of the plane containing the line vecr= veca + k vecb and ...

    Text Solution

    |

  11. ( axxb) xx (a xxc ).d equals

    Text Solution

    |

  12. If a,b,c and d be four vectors, then (a xxb). (c xx d) + ( b xx c) . ...

    Text Solution

    |

  13. If the non-zero vectors a and b are perpendicular to each other, then ...

    Text Solution

    |

  14. Let veda,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. Let a,b,c be any threee non zero non-coplanar vectors, then any vecto...

    Text Solution

    |

  16. If a,b,c and p,q,r are reciprocal systemm of vectors, then axxp+bxxq+c...

    Text Solution

    |

  17. If a.(b xx c) = 3 then

    Text Solution

    |

  18. Let a,b,c be three non-coplanar vectors and r be any vector in space s...

    Text Solution

    |

  19. Unit vector vecc is inclined at an angle theta to unit vectors ve...

    Text Solution

    |

  20. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |