Home
Class 12
MATHS
A particle is displaced from the point A...

A particle is displaced from the point `A(5, -5, -7)` to the point `B(6, 2, -2)` under the action of forces `P_(1) =10i-j+11k, P_(2) = 4i+5j+6k, P_(3) = -2i+j-9k,` then the work done is

A

81

B

85

C

87

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the work done when a particle is displaced from point A to point B under the action of three forces, we can follow these steps: ### Step 1: Determine the Displacement Vector The displacement vector \( \mathbf{D} \) from point A to point B can be calculated using the formula: \[ \mathbf{D} = \mathbf{B} - \mathbf{A} \] Given points: - \( A(5, -5, -7) \) - \( B(6, 2, -2) \) Calculating the components: \[ \mathbf{D} = (6 - 5)\mathbf{i} + (2 - (-5))\mathbf{j} + (-2 - (-7))\mathbf{k} \] \[ \mathbf{D} = 1\mathbf{i} + (2 + 5)\mathbf{j} + (7)\mathbf{k} \] \[ \mathbf{D} = 1\mathbf{i} + 7\mathbf{j} + 5\mathbf{k} \] ### Step 2: Calculate the Resultant Force Vector The resultant force vector \( \mathbf{F} \) is the sum of the three given force vectors: \[ \mathbf{P_1} = 10\mathbf{i} - \mathbf{j} + 11\mathbf{k} \] \[ \mathbf{P_2} = 4\mathbf{i} + 5\mathbf{j} + 6\mathbf{k} \] \[ \mathbf{P_3} = -2\mathbf{i} + \mathbf{j} - 9\mathbf{k} \] Calculating the resultant: \[ \mathbf{F} = \mathbf{P_1} + \mathbf{P_2} + \mathbf{P_3} \] \[ \mathbf{F} = (10 + 4 - 2)\mathbf{i} + (-1 + 5 + 1)\mathbf{j} + (11 + 6 - 9)\mathbf{k} \] \[ \mathbf{F} = 12\mathbf{i} + 5\mathbf{j} + 8\mathbf{k} \] ### Step 3: Calculate the Work Done The work done \( W \) is given by the dot product of the force vector \( \mathbf{F} \) and the displacement vector \( \mathbf{D} \): \[ W = \mathbf{F} \cdot \mathbf{D} \] Calculating the dot product: \[ W = (12\mathbf{i} + 5\mathbf{j} + 8\mathbf{k}) \cdot (1\mathbf{i} + 7\mathbf{j} + 5\mathbf{k}) \] \[ W = (12 \cdot 1) + (5 \cdot 7) + (8 \cdot 5) \] \[ W = 12 + 35 + 40 \] \[ W = 87 \] ### Final Answer The work done by the forces is \( \boxed{87} \). ---
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Self Assessment Test (MULTIPLE CHOICE QUESTIONS)|69 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Self Assessment Test (Assertion/Reason )|1 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

A particle is displaced from a position (2 vec i - vec j + vec k) metre to another position (3 vec i + 2 vec j -2 vec k) metre under the action of force (2 vec i + vec j -vec k) N. Work done by the force is

A body is displaced from vec r_(A) =(2hat i + 4hatj -6hat k) to vecr_(B) = (6hat i -4hat j +3 hat k) under a constant force vec F = (2 hat i + 3 hat j - hat k) . Find the work done.

Find the moment of forces P_(1)=2vec i+vec j+2vec k,P_(2)=2vec i+2vec j+2vec k about the point vec r=vec i+vec j+vec k

A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3hat(k)) to the point B (3hat(i) - hat(j) + 5hat(k)) . The work done by the force will be

A particle is displaced from position vec(r )_(1) = (3hat(i) + 2hat(j) + 6hat(k)) to another position vec(r )_(2)= (14hat(i) + 13hat(j) + 9hat(k)) under the impact of a force 5 hat(i)N . The work done will be given by