Home
Class 12
MATHS
The locus of the point of intersection o...

The locus of the point of intersection of tangents at the end-points of conjugate diameters of the ellipse `x^(2)/a^(2) + y^(2)/b^(2) = 1`, is

Text Solution

Verified by Experts

The correct Answer is:
`(x^2)/(a^2) + (y^2)/(b^2) = 2`
Promotional Banner

Topper's Solved these Questions

  • THE ELLIPSE

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES)|3 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise PROBLEM SET (3) (True and False)|1 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Self Assessment Test (Fill in the blanks) |7 Videos
  • THE HYPERBOLA

    ML KHANNA|Exercise SELF ASSESSMENT TEST |4 Videos

Similar Questions

Explore conceptually related problems

The locus of the point of intersection of the tangents at the end-points of normal chords of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , is

The locus of the point of intersection of the tangent at the endpoints of the focal chord of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(b

The locus of the point of intersection of the tangents at the ends of normal chord of the hyperbola x^(2)-y^(2)=a^(2) is

The locus of the point of intersection of tangents at the extremities of the chords of hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 which are tangents to the circle drawn on the line joining the foci as diameter is

Find the locus of point of intersection of tangents at the extremities of normal chords of the elipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

The locus of the point of intersection of the tangents at the extremities of the chords of the ellipse x^(2)+2y^(2)=6 which touch the ellipse x^(2)+4y^(2)=4, is x^(2)+y^(2)=4(b)x^(2)+y^(2)=6x^(2)+y^(2)=9(d) None of these

Find the locus of the point intersection of the tangents at the end of chord of elipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 , which substends an angle alpha at origin.

Prove that the locus of the point of intersection of the tangents at the ends of the normal chords of the hyperbola x^(2)-y^(2)=a^(2) is a^(2)(y^(2)-x^(2))=4x^(2)y^(2)

The locus of the point of intersection of tangents to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 at the points whose eccentric angles differ by pi//2 , is

The locus of the point of intersection of tangents to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , which make complementary angles with x - axis, is