Home
Class 12
MATHS
If tan^2 x + (1 - sqrt3) tan x - sqrt3 =...

If `tan^2 x + (1 - sqrt3) tan x - sqrt3 = 0` then `x=

A

`n pi + pi/3`

B

`n pi - pi/3`

C

`n pi /pi/4`

D

`n pi-pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^2 x + (1 - \sqrt{3}) \tan x - \sqrt{3} = 0 \), we can follow these steps: ### Step 1: Identify the coefficients The equation is in the standard quadratic form \( ax^2 + bx + c = 0 \), where: - \( a = 1 \) - \( b = 1 - \sqrt{3} \) - \( c = -\sqrt{3} \) ### Step 2: Apply the quadratic formula The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values of \( a \), \( b \), and \( c \): \[ \tan x = \frac{-(1 - \sqrt{3}) \pm \sqrt{(1 - \sqrt{3})^2 - 4 \cdot 1 \cdot (-\sqrt{3})}}{2 \cdot 1} \] ### Step 3: Simplify the expression Calculating \( (1 - \sqrt{3})^2 \): \[ (1 - \sqrt{3})^2 = 1 - 2\sqrt{3} + 3 = 4 - 2\sqrt{3} \] Now, calculate \( -4 \cdot 1 \cdot (-\sqrt{3}) = 4\sqrt{3} \). Now, substituting back into the formula: \[ \tan x = \frac{-(1 - \sqrt{3}) \pm \sqrt{(4 - 2\sqrt{3}) + 4\sqrt{3}}}{2} \] \[ = \frac{-(1 - \sqrt{3}) \pm \sqrt{4 + 2\sqrt{3}}}{2} \] ### Step 4: Further simplify the square root The expression under the square root simplifies to: \[ 4 + 2\sqrt{3} = (2 + \sqrt{3})^2 \] Thus, we have: \[ \tan x = \frac{-(1 - \sqrt{3}) \pm (2 + \sqrt{3})}{2} \] ### Step 5: Calculate the two possible values for \( \tan x \) 1. For the positive case: \[ \tan x = \frac{-(1 - \sqrt{3}) + (2 + \sqrt{3})}{2} = \frac{1 + 2\sqrt{3}}{2} \] 2. For the negative case: \[ \tan x = \frac{-(1 - \sqrt{3}) - (2 + \sqrt{3})}{2} = \frac{-3}{2} \] ### Step 6: Find the angles corresponding to these tangent values 1. For \( \tan x = \frac{1 + 2\sqrt{3}}{2} \): - This value corresponds to \( x = \tan^{-1}\left(\frac{1 + 2\sqrt{3}}{2}\right) \). 2. For \( \tan x = -\frac{3}{2} \): - This value corresponds to \( x = \tan^{-1}\left(-\frac{3}{2}\right) \). ### Step 7: General solution The general solutions for \( x \) can be expressed as: 1. \( x = n\pi + \tan^{-1}\left(\frac{1 + 2\sqrt{3}}{2}\right) \) 2. \( x = n\pi + \tan^{-1}\left(-\frac{3}{2}\right) \) ### Final Answer Thus, the values of \( x \) are: \[ x = n\pi + \tan^{-1}\left(\frac{1 + 2\sqrt{3}}{2}\right), \quad x = n\pi + \tan^{-1}\left(-\frac{3}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((true or false)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((fill in the blanks)|1 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

tan x>-sqrt(3)

tan x=2-sqrt(3)

Solve tan^2 x-(1+sqrt3)tan x+sqrt3=0

tan^(2)x-(1+sqrt(3))tan x+sqrt(3)<0

tan^(2)x-sqrt(3)tan x=0

Solve tan x+tan 2x + sqrt3 tan x tan 2x= sqrt3

Solve the following trigonometric equations, (i) cot^(2)x+(3)/("sin"x)+3=0 (ii) "tan"^(2)x-(1+sqrt(3))"tan"x - sqrt(3)=0 (iii) 3"tan"^(2)x+2sqrt(3)"tan"x-3=0 (iv) "tan"((pi)/(4)+theta)+"tan"((pi)/(4)-theta)=4

Find the error in steps to evaluate the following integral int_(0)^(pi)(dx)/(1+2 sin ^(2) x )=int _(0)^(pi)(sec^(2)xdx)/(sec^(2)x+2 tan^(2)x)=int_(0)^(pi) (sec^(2)xdx)/(1+3 tan^(2)x) =(1)/(sqrt3)[tan^(-1)(sqrt3 tan x)]_(0)^(pi)=0

If -(1)/sqrt(3) lt x lt (1)/sqrt(3), then tan^(-1) (3x-x^(3))/(1-3x^(2)) equals

tan x+tan2x+sqrt(3)tan x*tan2x=sqrt(3)

ML KHANNA-TRIGONOMETRICAL EQUATIONS -SELF ASSESSMENT TEST
  1. If tan^2 x + (1 - sqrt3) tan x - sqrt3 = 0 then x=

    Text Solution

    |

  2. If sintheta=sinalpha, then

    Text Solution

    |

  3. The general solution of the trigonometic equation "sin"x + "cos"x = 1...

    Text Solution

    |

  4. The general solution of equation sin^2 theta sec theta + sqrt3 tan th...

    Text Solution

    |

  5. The solution set of (2"cos"x-1)(3+2"cos"x) = 0 in the interval 0 le x ...

    Text Solution

    |

  6. If tan a theta-tan b theta=0, then prove that the values of theta form...

    Text Solution

    |

  7. If cos p theta+cos q theta=0, then prove that the different values of ...

    Text Solution

    |

  8. If sin5x+sin3x+sinx=0, then the value of x other than zero between 0le...

    Text Solution

    |

  9. The maximum value of sin (x + x/6) + cos (x + pi/6) int eh interval (0...

    Text Solution

    |

  10. If x = X "cos" theta-Y "sin" theta, y = X "sin" theta + Y "cos" theta ...

    Text Solution

    |

  11. The general solution of the equation tan^2 x + 2 sqrt3 tan x = 1is giv...

    Text Solution

    |

  12. Let P= {theta : sin theta - cos theta = sqrt2 cos theta} and Q =...

    Text Solution

    |

  13. For 0 lt theta lt pi/2, the solutions of sigma(m-1)^(6)"cosec"(theta+(...

    Text Solution

    |

  14. The positive integer value of n gt 3 satisfying the equation (1)/(sin(...

    Text Solution

    |

  15. The number of all possible values of theta,where 0 lt thetalt pi for w...

    Text Solution

    |

  16. The number of values of theta in the interval (-(pi)/(2), (pi)/(2)) su...

    Text Solution

    |

  17. If sqrt3cos theta + sin theta = sqrt2 then general value of theta is

    Text Solution

    |

  18. The general solution of sinx-cosx=sqrt(2), for any integer n is

    Text Solution

    |

  19. If tan2theta =1, then the general value of theta is

    Text Solution

    |

  20. The equation a "cos" x - "cos" 2x = 2a-7 passesses a solution if

    Text Solution

    |

  21. General value of theta obtained from the equation cos 2 theta = sin al...

    Text Solution

    |