Home
Class 12
MATHS
2 sin^2 x + sin^2 2 x =2, - pi lt x lt p...

`2 sin^2 x + sin^2 2 x =2, - pi lt x lt pi`, then x =

A

`pm pi//2`

B

`pm pi//4`

C

`pm3 pi//4`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2 \sin^2 x + \sin^2 2x = 2\) for \(-\pi < x < \pi\), we will follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ 2 \sin^2 x + \sin^2 2x = 2 \] ### Step 2: Use the double angle identity Recall that \(\sin 2x = 2 \sin x \cos x\). Therefore, \[ \sin^2 2x = (2 \sin x \cos x)^2 = 4 \sin^2 x \cos^2 x \] ### Step 3: Substitute into the equation Substituting \(\sin^2 2x\) into the original equation gives: \[ 2 \sin^2 x + 4 \sin^2 x \cos^2 x = 2 \] ### Step 4: Factor out \(\sin^2 x\) Let \(y = \sin^2 x\). Then we can rewrite the equation as: \[ 2y + 4y(1 - y) = 2 \] This simplifies to: \[ 2y + 4y - 4y^2 = 2 \] \[ 6y - 4y^2 = 2 \] ### Step 5: Rearrange the equation Rearranging gives us a quadratic equation: \[ 4y^2 - 6y + 2 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula \(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 4\), \(b = -6\), and \(c = 2\). \[ y = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 4 \cdot 2}}{2 \cdot 4} \] \[ y = \frac{6 \pm \sqrt{36 - 32}}{8} \] \[ y = \frac{6 \pm 2}{8} \] Calculating the two possible values: 1. \(y = \frac{8}{8} = 1\) 2. \(y = \frac{4}{8} = \frac{1}{2}\) ### Step 7: Find values of \(x\) Now we have two cases for \(\sin^2 x\): 1. \(\sin^2 x = 1\) implies \(\sin x = \pm 1\) which gives \(x = \pm \frac{\pi}{2}\). 2. \(\sin^2 x = \frac{1}{2}\) implies \(\sin x = \pm \frac{1}{\sqrt{2}}\) which gives \(x = \pm \frac{\pi}{4}\). ### Step 8: Compile all solutions The solutions for \(x\) in the interval \(-\pi < x < \pi\) are: \[ x = \pm \frac{\pi}{4}, \pm \frac{\pi}{2} \] ### Step 9: Check for any additional solutions We also need to check if there are any solutions from the double angle identity: - For \(2x = \frac{\pi}{2} + n\pi\) and \(2x = \pi + n\pi\), we find that: - \(x = \frac{\pi}{4}\), \(-\frac{\pi}{4}\), \(\frac{\pi}{2}\), and \(-\frac{\pi}{2}\) are valid solutions. ### Final Solutions Thus, the final solutions are: \[ x = \frac{\pi}{4}, -\frac{\pi}{4}, \frac{\pi}{2}, -\frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((true or false)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((fill in the blanks)|1 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

If : sin 5x + sin 3x + sin x = 0 , where 0 lt x le (pi)/2 , then : x =

If sin2x=cos3x and 0 leq x lt pi/2 then x=

If : sin x +cos x = sin 2 x + cos 2 x , "where" 0 lt x le (pi)/(2), "then x":=

Principal solutions of the equation sin 2x + cos 2x =0 . Where pi lt x lt 2pi are

0 <= x <= 2 pi, 0 <= y <= 2 pi and sin x + sin y = 2, quad 0 <= x <= 2 pi, 0 <= y <= 2 pi and sin x + sin y = 2, then x + y =

If cos x + sin x = a (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

If (sin^(2) 2x + 4 sin^(4) x - 4 sin^(2)x * cos^(2) x )/(4- sin^(2) 2x - 4 sin^(2) x )=(1)/(9) and 0 lt x lt pi . Then the value of x is :

If f(x)={:{(x sin x", for " 0 lt x le pi/2),(pi/2 sin (pi+x)", for " pi/2 lt x lt pi):} , then

ML KHANNA-TRIGONOMETRICAL EQUATIONS -SELF ASSESSMENT TEST
  1. 2 sin^2 x + sin^2 2 x =2, - pi lt x lt pi, then x =

    Text Solution

    |

  2. If sintheta=sinalpha, then

    Text Solution

    |

  3. The general solution of the trigonometic equation "sin"x + "cos"x = 1...

    Text Solution

    |

  4. The general solution of equation sin^2 theta sec theta + sqrt3 tan th...

    Text Solution

    |

  5. The solution set of (2"cos"x-1)(3+2"cos"x) = 0 in the interval 0 le x ...

    Text Solution

    |

  6. If tan a theta-tan b theta=0, then prove that the values of theta form...

    Text Solution

    |

  7. If cos p theta+cos q theta=0, then prove that the different values of ...

    Text Solution

    |

  8. If sin5x+sin3x+sinx=0, then the value of x other than zero between 0le...

    Text Solution

    |

  9. The maximum value of sin (x + x/6) + cos (x + pi/6) int eh interval (0...

    Text Solution

    |

  10. If x = X "cos" theta-Y "sin" theta, y = X "sin" theta + Y "cos" theta ...

    Text Solution

    |

  11. The general solution of the equation tan^2 x + 2 sqrt3 tan x = 1is giv...

    Text Solution

    |

  12. Let P= {theta : sin theta - cos theta = sqrt2 cos theta} and Q =...

    Text Solution

    |

  13. For 0 lt theta lt pi/2, the solutions of sigma(m-1)^(6)"cosec"(theta+(...

    Text Solution

    |

  14. The positive integer value of n gt 3 satisfying the equation (1)/(sin(...

    Text Solution

    |

  15. The number of all possible values of theta,where 0 lt thetalt pi for w...

    Text Solution

    |

  16. The number of values of theta in the interval (-(pi)/(2), (pi)/(2)) su...

    Text Solution

    |

  17. If sqrt3cos theta + sin theta = sqrt2 then general value of theta is

    Text Solution

    |

  18. The general solution of sinx-cosx=sqrt(2), for any integer n is

    Text Solution

    |

  19. If tan2theta =1, then the general value of theta is

    Text Solution

    |

  20. The equation a "cos" x - "cos" 2x = 2a-7 passesses a solution if

    Text Solution

    |

  21. General value of theta obtained from the equation cos 2 theta = sin al...

    Text Solution

    |