Home
Class 12
MATHS
If 1/6 sin theta, cos theta, tan theta a...

If `1/6 sin theta, cos theta, tan theta` are in G.P. then `theta`=

A

`2 n pi pm pi/3`

B

`2n pi pm pi/6`

C

`n pi + (-1)^n pi/3`

D

`n pi + pi/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \frac{1}{6} \sin \theta, \cos \theta, \tan \theta \) are in geometric progression (G.P.), we follow these steps: ### Step 1: Understand the Condition for G.P. For three terms \( a, b, c \) to be in G.P., the condition is that \( b^2 = ac \). Here, we have: - \( a = \frac{1}{6} \sin \theta \) - \( b = \cos \theta \) - \( c = \tan \theta \) Thus, we need to set up the equation: \[ \cos^2 \theta = \left(\frac{1}{6} \sin \theta\right) \tan \theta \] ### Step 2: Substitute \( \tan \theta \) Recall that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). Substituting this into the equation gives: \[ \cos^2 \theta = \left(\frac{1}{6} \sin \theta\right) \left(\frac{\sin \theta}{\cos \theta}\right) \] This simplifies to: \[ \cos^2 \theta = \frac{1}{6} \frac{\sin^2 \theta}{\cos \theta} \] ### Step 3: Cross Multiply Cross multiplying gives: \[ \cos^3 \theta = \frac{1}{6} \sin^2 \theta \] ### Step 4: Use the Pythagorean Identity We know that \( \sin^2 \theta = 1 - \cos^2 \theta \). Substituting this into the equation: \[ \cos^3 \theta = \frac{1}{6} (1 - \cos^2 \theta) \] ### Step 5: Rearranging the Equation Multiplying through by 6 to eliminate the fraction: \[ 6 \cos^3 \theta = 1 - \cos^2 \theta \] Rearranging gives: \[ 6 \cos^3 \theta + \cos^2 \theta - 1 = 0 \] ### Step 6: Factor the Polynomial Let \( x = \cos \theta \). The equation becomes: \[ 6x^3 + x^2 - 1 = 0 \] We can try \( x = \frac{1}{2} \) as a potential root: \[ 6\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 1 = 6 \cdot \frac{1}{8} + \frac{1}{4} - 1 = \frac{3}{4} + \frac{1}{4} - 1 = 0 \] Thus, \( x = \frac{1}{2} \) is indeed a root. ### Step 7: Factor Out \( (x - \frac{1}{2}) \) Using synthetic division or polynomial long division, we can factor \( 6x^3 + x^2 - 1 \) as: \[ (x - \frac{1}{2})(6x^2 + 4x + 2) = 0 \] ### Step 8: Solve for \( x \) The first factor gives: \[ \cos \theta = \frac{1}{2} \] This implies: \[ \theta = \frac{\pi}{3} + 2n\pi \quad \text{or} \quad \theta = -\frac{\pi}{3} + 2n\pi, \quad n \in \mathbb{Z} \] The second factor \( 6x^2 + 4x + 2 = 0 \) has no real solutions since the discriminant \( 4^2 - 4 \cdot 6 \cdot 2 < 0 \). ### Final Answer Thus, the solutions for \( \theta \) are: \[ \theta = \frac{\pi}{3} + 2n\pi \quad \text{or} \quad \theta = -\frac{\pi}{3} + 2n\pi, \quad n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((true or false)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((fill in the blanks)|1 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

If (1)/(6)sin theta,cos theta,tan theta are in Gdot P; then theta is equal to

If sin theta,cos theta,tan theta are in G.P then cos^(9)theta+cos^(6)theta+3cos^(5)theta-1 is equal to

If sin theta,cos theta and tan theta are in G.P.then cot^(6)theta-cot^(2)theta is equal to

If sin theta,cos theta and tan theta are in G.P.then cot^(6)theta-cot^(2)theta is equal to

6sin theta+7cos theta=9 if tan theta=

If sin theta,tan theta,cos theta are in G.P.then 4sin^(2)theta-3sin^(4)theta+sin^(6)theta=?

If 2 - cos^(2) theta = 3 sin theta cos theta , sin theta ne cos theta then tan theta is

The value of ((sin theta -cos theta )(1+tan theta + cot theta ))/(1+sin theta cos theta ) = ?

Consider f(theta)=|[tan theta,cos theta,sin theta],[cos theta,sin theta,tan theta],[sin theta,tan theta,cos theta]| then f((pi)/(4))+f(0) = ?

ML KHANNA-TRIGONOMETRICAL EQUATIONS -SELF ASSESSMENT TEST
  1. If 1/6 sin theta, cos theta, tan theta are in G.P. then theta=

    Text Solution

    |

  2. If sintheta=sinalpha, then

    Text Solution

    |

  3. The general solution of the trigonometic equation "sin"x + "cos"x = 1...

    Text Solution

    |

  4. The general solution of equation sin^2 theta sec theta + sqrt3 tan th...

    Text Solution

    |

  5. The solution set of (2"cos"x-1)(3+2"cos"x) = 0 in the interval 0 le x ...

    Text Solution

    |

  6. If tan a theta-tan b theta=0, then prove that the values of theta form...

    Text Solution

    |

  7. If cos p theta+cos q theta=0, then prove that the different values of ...

    Text Solution

    |

  8. If sin5x+sin3x+sinx=0, then the value of x other than zero between 0le...

    Text Solution

    |

  9. The maximum value of sin (x + x/6) + cos (x + pi/6) int eh interval (0...

    Text Solution

    |

  10. If x = X "cos" theta-Y "sin" theta, y = X "sin" theta + Y "cos" theta ...

    Text Solution

    |

  11. The general solution of the equation tan^2 x + 2 sqrt3 tan x = 1is giv...

    Text Solution

    |

  12. Let P= {theta : sin theta - cos theta = sqrt2 cos theta} and Q =...

    Text Solution

    |

  13. For 0 lt theta lt pi/2, the solutions of sigma(m-1)^(6)"cosec"(theta+(...

    Text Solution

    |

  14. The positive integer value of n gt 3 satisfying the equation (1)/(sin(...

    Text Solution

    |

  15. The number of all possible values of theta,where 0 lt thetalt pi for w...

    Text Solution

    |

  16. The number of values of theta in the interval (-(pi)/(2), (pi)/(2)) su...

    Text Solution

    |

  17. If sqrt3cos theta + sin theta = sqrt2 then general value of theta is

    Text Solution

    |

  18. The general solution of sinx-cosx=sqrt(2), for any integer n is

    Text Solution

    |

  19. If tan2theta =1, then the general value of theta is

    Text Solution

    |

  20. The equation a "cos" x - "cos" 2x = 2a-7 passesses a solution if

    Text Solution

    |

  21. General value of theta obtained from the equation cos 2 theta = sin al...

    Text Solution

    |