Home
Class 12
MATHS
The number of values of theta in [0,4pi]...

The number of values of `theta in [0,4pi]` satisfying the equation `abs(sqrt3 cos x - sin x) ge 2` is

A

0

B

2

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( |\sqrt{3} \cos x - \sin x| \geq 2 \) for \( x \) in the interval \( [0, 4\pi] \), we will break it down step by step. ### Step 1: Remove the absolute value The absolute value inequality \( |\sqrt{3} \cos x - \sin x| \geq 2 \) can be rewritten as two separate inequalities: \[ \sqrt{3} \cos x - \sin x \geq 2 \quad \text{or} \quad \sqrt{3} \cos x - \sin x \leq -2 \] ### Step 2: Solve the first inequality Starting with the first inequality: \[ \sqrt{3} \cos x - \sin x \geq 2 \] Rearranging gives: \[ \sqrt{3} \cos x - 2 \geq \sin x \] This can be rewritten as: \[ \sqrt{3} \cos x - \sin x \geq 2 \] Dividing through by 2: \[ \frac{\sqrt{3}}{2} \cos x - \frac{1}{2} \sin x \geq 1 \] ### Step 3: Use the cosine addition formula Recall that \( \cos(a + b) = \cos a \cos b - \sin a \sin b \). We can express the left-hand side as: \[ \cos\left(x + \frac{\pi}{6}\right) \geq 1 \] This implies: \[ x + \frac{\pi}{6} = 2n\pi \quad \text{for integers } n \] Thus: \[ x = 2n\pi - \frac{\pi}{6} \] ### Step 4: Find values for \( n \) For \( n = 0 \): \[ x = -\frac{\pi}{6} \quad (\text{not in } [0, 4\pi]) \] For \( n = 1 \): \[ x = 2\pi - \frac{\pi}{6} = \frac{12\pi}{6} - \frac{\pi}{6} = \frac{11\pi}{6} \] For \( n = 2 \): \[ x = 4\pi - \frac{\pi}{6} = \frac{24\pi}{6} - \frac{\pi}{6} = \frac{23\pi}{6} \] For \( n = 3 \): \[ x = 6\pi - \frac{\pi}{6} = \frac{36\pi}{6} - \frac{\pi}{6} = \frac{35\pi}{6} \quad (\text{not in } [0, 4\pi]) \] ### Step 5: Solve the second inequality Now, consider the second inequality: \[ \sqrt{3} \cos x - \sin x \leq -2 \] Rearranging gives: \[ \sqrt{3} \cos x + 2 \leq \sin x \] This can be rewritten as: \[ \frac{\sqrt{3}}{2} \cos x + 1 \leq \frac{1}{2} \sin x \] Using the cosine addition formula: \[ \cos\left(x + \frac{\pi}{6}\right) \leq -1 \] This implies: \[ x + \frac{\pi}{6} = (2n + 1)\pi \quad \text{for integers } n \] Thus: \[ x = (2n + 1)\pi - \frac{\pi}{6} \] ### Step 6: Find values for \( n \) For \( n = 0 \): \[ x = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \] For \( n = 1 \): \[ x = 3\pi - \frac{\pi}{6} = \frac{18\pi}{6} - \frac{\pi}{6} = \frac{17\pi}{6} \] For \( n = 2 \): \[ x = 5\pi - \frac{\pi}{6} = \frac{30\pi}{6} - \frac{\pi}{6} = \frac{29\pi}{6} \quad (\text{not in } [0, 4\pi]) \] ### Step 7: Collect all solutions The valid solutions in the interval \( [0, 4\pi] \) are: 1. \( \frac{11\pi}{6} \) 2. \( \frac{23\pi}{6} \) 3. \( \frac{5\pi}{6} \) 4. \( \frac{17\pi}{6} \) ### Conclusion Thus, the total number of values of \( x \) satisfying the equation in the interval \( [0, 4\pi] \) is **4**. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((true or false)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((fill in the blanks)|1 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

The number of values of x in [0, 4 pi] satisfying the inequation |sqrt(3)"cos" x - "sin"x|ge2 , is

The number of values of x in [0,5 pi] satisfying the equation 3cos^(2)x-10cos x+7=0

The number of values of x in [0,2pi] satisfying the equation 3cos2x-10cosx+7=0 is

The number of values of theta in [0,2 pi] satisfying the equation 2sin^(2)theta=4+3cos theta are

The number of values of x in [0,2 pi] satisfying the equation |cos x sin x|>=sqrt(2) is

The number of values of x in the interval [0, 5pi] satisfying the equation 3 sin^(2)x - 7 sin x + 2 = 0 is

ML KHANNA-TRIGONOMETRICAL EQUATIONS -SELF ASSESSMENT TEST
  1. The number of values of theta in [0,4pi] satisfying the equation abs(s...

    Text Solution

    |

  2. If sintheta=sinalpha, then

    Text Solution

    |

  3. The general solution of the trigonometic equation "sin"x + "cos"x = 1...

    Text Solution

    |

  4. The general solution of equation sin^2 theta sec theta + sqrt3 tan th...

    Text Solution

    |

  5. The solution set of (2"cos"x-1)(3+2"cos"x) = 0 in the interval 0 le x ...

    Text Solution

    |

  6. If tan a theta-tan b theta=0, then prove that the values of theta form...

    Text Solution

    |

  7. If cos p theta+cos q theta=0, then prove that the different values of ...

    Text Solution

    |

  8. If sin5x+sin3x+sinx=0, then the value of x other than zero between 0le...

    Text Solution

    |

  9. The maximum value of sin (x + x/6) + cos (x + pi/6) int eh interval (0...

    Text Solution

    |

  10. If x = X "cos" theta-Y "sin" theta, y = X "sin" theta + Y "cos" theta ...

    Text Solution

    |

  11. The general solution of the equation tan^2 x + 2 sqrt3 tan x = 1is giv...

    Text Solution

    |

  12. Let P= {theta : sin theta - cos theta = sqrt2 cos theta} and Q =...

    Text Solution

    |

  13. For 0 lt theta lt pi/2, the solutions of sigma(m-1)^(6)"cosec"(theta+(...

    Text Solution

    |

  14. The positive integer value of n gt 3 satisfying the equation (1)/(sin(...

    Text Solution

    |

  15. The number of all possible values of theta,where 0 lt thetalt pi for w...

    Text Solution

    |

  16. The number of values of theta in the interval (-(pi)/(2), (pi)/(2)) su...

    Text Solution

    |

  17. If sqrt3cos theta + sin theta = sqrt2 then general value of theta is

    Text Solution

    |

  18. The general solution of sinx-cosx=sqrt(2), for any integer n is

    Text Solution

    |

  19. If tan2theta =1, then the general value of theta is

    Text Solution

    |

  20. The equation a "cos" x - "cos" 2x = 2a-7 passesses a solution if

    Text Solution

    |

  21. General value of theta obtained from the equation cos 2 theta = sin al...

    Text Solution

    |