Home
Class 12
MATHS
The solution of the equation 9 cos^12...

The solution of the equation
`9 cos^12 x + cos^2 2x + 1 = 6 cos ^6 x cos 2x. + 6 cos^6 x - 2 cos 2x`
are given by x =

A

`n pi + pi/2`

B

`n pi + cos^(-1) "" sqrt(2/3)`

C

`n pi - cos^(-1) "" sqrt(2/3)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 9 \cos^{12} x + \cos^2 2x + 1 = 6 \cos^6 x \cos 2x + 6 \cos^6 x - 2 \cos 2x \), we will follow these steps: ### Step 1: Substitute \( \cos 2x \) Using the identity \( \cos 2x = 2 \cos^2 x - 1 \), we can rewrite the equation. \[ \cos^2 2x = (2 \cos^2 x - 1)^2 \] ### Step 2: Expand the equation Substituting \( \cos 2x \) into the equation gives: \[ 9 \cos^{12} x + (2 \cos^2 x - 1)^2 + 1 = 6 \cos^6 x (2 \cos^2 x - 1) + 6 \cos^6 x - 2(2 \cos^2 x - 1) \] ### Step 3: Simplify the left side Expanding \( (2 \cos^2 x - 1)^2 \): \[ (2 \cos^2 x - 1)^2 = 4 \cos^4 x - 4 \cos^2 x + 1 \] Thus, the left side becomes: \[ 9 \cos^{12} x + 4 \cos^4 x - 4 \cos^2 x + 1 + 1 = 9 \cos^{12} x + 4 \cos^4 x - 4 \cos^2 x + 2 \] ### Step 4: Simplify the right side Now, simplifying the right side: \[ 6 \cos^6 x (2 \cos^2 x - 1) + 6 \cos^6 x - 4 \cos^2 x + 2 \] This simplifies to: \[ 12 \cos^8 x - 6 \cos^6 x + 6 \cos^6 x - 4 \cos^2 x + 2 = 12 \cos^8 x - 4 \cos^2 x + 2 \] ### Step 5: Set the equation to zero Now we have: \[ 9 \cos^{12} x + 4 \cos^4 x - 4 \cos^2 x + 2 = 12 \cos^8 x - 4 \cos^2 x + 2 \] Subtracting the right side from the left gives: \[ 9 \cos^{12} x + 4 \cos^4 x - 12 \cos^8 x = 0 \] ### Step 6: Factor the equation Factoring out \( \cos^4 x \): \[ \cos^4 x (9 \cos^8 x - 12 \cos^4 x + 4) = 0 \] ### Step 7: Solve for \( \cos^4 x = 0 \) This gives us: 1. \( \cos^4 x = 0 \) which implies \( \cos x = 0 \) leading to: \[ x = n \frac{\pi}{2} + \frac{\pi}{2}, \quad n \in \mathbb{Z} \] ### Step 8: Solve the quadratic equation Now, we solve the quadratic equation: \[ 9 \cos^8 x - 12 \cos^4 x + 4 = 0 \] Let \( y = \cos^4 x \): \[ 9y^2 - 12y + 4 = 0 \] ### Step 9: Use the quadratic formula Using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{12 \pm \sqrt{(-12)^2 - 4 \cdot 9 \cdot 4}}{2 \cdot 9} \] Calculating the discriminant: \[ = \frac{12 \pm \sqrt{144 - 144}}{18} = \frac{12}{18} = \frac{2}{3} \] ### Step 10: Solve for \( \cos^4 x \) Thus, we have: \[ \cos^4 x = \frac{2}{3} \] Taking the fourth root gives: \[ \cos x = \pm \left( \frac{2}{3} \right)^{1/4} \] ### Final Solution Thus, the solutions for \( x \) are: \[ x = n\pi \pm \cos^{-1}\left( \left( \frac{2}{3} \right)^{1/4} \right), \quad n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((true or false)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((fill in the blanks)|1 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

The general solution of the equation cos x cos6x=-1 is

The general solution of the equation 8 cos x cos 2x cos 4x = sin 6x//sin x is

The general solution of the equation "cos" x"cos"6x = -1 , is

Solution of the equation cos^(2)x+cos^(2)2x+cos^(2)3x=1 is

int cos 2x . cos 4x . cos 6x dx

Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x *cos 2x *cos 3x .

1+ cos 2x+ cos4x + cos 6x=

The sum of the solutions x in of the equation frac{3 cos 2x cos^3 2x}{cos^6 x - sin^6 x} = x^3 - x^2 6 is

ML KHANNA-TRIGONOMETRICAL EQUATIONS -SELF ASSESSMENT TEST
  1. The solution of the equation 9 cos^12 x + cos^2 2x + 1 = 6 cos ^6 x...

    Text Solution

    |

  2. If sintheta=sinalpha, then

    Text Solution

    |

  3. The general solution of the trigonometic equation "sin"x + "cos"x = 1...

    Text Solution

    |

  4. The general solution of equation sin^2 theta sec theta + sqrt3 tan th...

    Text Solution

    |

  5. The solution set of (2"cos"x-1)(3+2"cos"x) = 0 in the interval 0 le x ...

    Text Solution

    |

  6. If tan a theta-tan b theta=0, then prove that the values of theta form...

    Text Solution

    |

  7. If cos p theta+cos q theta=0, then prove that the different values of ...

    Text Solution

    |

  8. If sin5x+sin3x+sinx=0, then the value of x other than zero between 0le...

    Text Solution

    |

  9. The maximum value of sin (x + x/6) + cos (x + pi/6) int eh interval (0...

    Text Solution

    |

  10. If x = X "cos" theta-Y "sin" theta, y = X "sin" theta + Y "cos" theta ...

    Text Solution

    |

  11. The general solution of the equation tan^2 x + 2 sqrt3 tan x = 1is giv...

    Text Solution

    |

  12. Let P= {theta : sin theta - cos theta = sqrt2 cos theta} and Q =...

    Text Solution

    |

  13. For 0 lt theta lt pi/2, the solutions of sigma(m-1)^(6)"cosec"(theta+(...

    Text Solution

    |

  14. The positive integer value of n gt 3 satisfying the equation (1)/(sin(...

    Text Solution

    |

  15. The number of all possible values of theta,where 0 lt thetalt pi for w...

    Text Solution

    |

  16. The number of values of theta in the interval (-(pi)/(2), (pi)/(2)) su...

    Text Solution

    |

  17. If sqrt3cos theta + sin theta = sqrt2 then general value of theta is

    Text Solution

    |

  18. The general solution of sinx-cosx=sqrt(2), for any integer n is

    Text Solution

    |

  19. If tan2theta =1, then the general value of theta is

    Text Solution

    |

  20. The equation a "cos" x - "cos" 2x = 2a-7 passesses a solution if

    Text Solution

    |

  21. General value of theta obtained from the equation cos 2 theta = sin al...

    Text Solution

    |