Home
Class 12
MATHS
If Sigma n^2 = lambda Sigma n, then sin^...

If `Sigma n^2 = lambda Sigma n`, then `sin^(-1) "" ((9 lambda^2 - 4 n^2)/(6 lambda + 4n))` =

A

`pi/6`

B

`pi/3`

C

`pi/2`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, we start with the equation: \[ \Sigma n^2 = \lambda \Sigma n \] ### Step 1: Use the formulas for the summations We know the formulas for the summations: - \(\Sigma n^2 = \frac{n(n + 1)(2n + 1)}{6}\) - \(\Sigma n = \frac{n(n + 1)}{2}\) Substituting these into the equation gives us: \[ \frac{n(n + 1)(2n + 1)}{6} = \lambda \cdot \frac{n(n + 1)}{2} \] ### Step 2: Simplify the equation We can cancel \(n(n + 1)\) from both sides (assuming \(n \neq 0\) and \(n \neq -1\)): \[ \frac{2n + 1}{6} = \lambda \] ### Step 3: Solve for \(\lambda\) From the above equation, we can express \(\lambda\): \[ \lambda = \frac{2n + 1}{6} \] ### Step 4: Substitute \(\lambda\) into the expression Now we need to evaluate the expression: \[ \sin^{-1} \left( \frac{9\lambda^2 - 4n^2}{6\lambda + 4n} \right) \] Substituting \(\lambda = \frac{2n + 1}{6}\): 1. Calculate \(\lambda^2\): \[ \lambda^2 = \left(\frac{2n + 1}{6}\right)^2 = \frac{(2n + 1)^2}{36} = \frac{4n^2 + 4n + 1}{36} \] 2. Substitute \(\lambda^2\) into the expression: \[ 9\lambda^2 = 9 \cdot \frac{4n^2 + 4n + 1}{36} = \frac{36n^2 + 36n + 9}{36} \] 3. Now calculate \(9\lambda^2 - 4n^2\): \[ 9\lambda^2 - 4n^2 = \frac{36n^2 + 36n + 9 - 144n^2}{36} = \frac{-108n^2 + 36n + 9}{36} \] 4. Now calculate \(6\lambda + 4n\): \[ 6\lambda = 6 \cdot \frac{2n + 1}{6} = 2n + 1 \] Thus, \[ 6\lambda + 4n = 2n + 1 + 4n = 6n + 1 \] ### Step 5: Substitute into the sine inverse expression Now we substitute these results back into the sine inverse expression: \[ \sin^{-1} \left( \frac{\frac{-108n^2 + 36n + 9}{36}}{6n + 1} \right) \] This simplifies to: \[ \sin^{-1} \left( \frac{-108n^2 + 36n + 9}{36(6n + 1)} \right) \] ### Step 6: Simplify further Notice that we can factor out common terms and simplify: \[ = \sin^{-1} \left( \frac{9 - 4n^2}{6n + 4} \right) \] ### Step 7: Evaluate the sine inverse We know that: \[ \sin^{-1} \left( \frac{1}{2} \right) = \frac{\pi}{6} \] Thus, the final answer is: \[ \sin^{-1} \left( \frac{9\lambda^2 - 4n^2}{6\lambda + 4n} \right) = \frac{\pi}{6} \] ### Final Answer: \[ \frac{\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((true or false)|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((fill in the blanks)|1 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

sum mation (n ^ (2)) = lambda sum mation (n) and M = (9 lambda ^ (2) -4n ^ (2)) / (6 lambda + 4n)

Sigma_(n=1)^(5)sin ^(-1) ( sin ( 2n -1)) is

Let P(n):3^(n) =lambda then smallest value of lambda is

If x^2 - 70x lambda =0 have roots alpha , beta in N , (lambda)/2, (lambda)/3 notin N . Find minimum value of lambda

A certain radioactive material can undergo three constant lambda,2lambda and 3 lambda . Then, the effective decay constant lambda_(eff) is equal to n lambda . What is the value of n?

p(lambda)^4+q(lambda)^3+r(lambda)^2+s(lambda)+t = |((lambda^2 + 3lambda) , lambda -1 , lambda+3) , (lambda +1 , -2lambda , lambda-4 ) ,(lambda-3 , lambda+4 , 3lambda)| find t=?

Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n>=2,f^(n+1)(x)=f(f^(n)(x)). If lambda=(lim)_(n rarr oo)f^(n)(x), then (a)lambda is independent of x( b) lambda is a linear polynomial in 4y=lambda touches the unit circle 0. (d)the line 4y=lambda touches the unit circle with centre at the origin.

ML KHANNA-TRIGONOMETRICAL EQUATIONS -SELF ASSESSMENT TEST
  1. If Sigma n^2 = lambda Sigma n, then sin^(-1) "" ((9 lambda^2 - 4 n^2)/...

    Text Solution

    |

  2. If sintheta=sinalpha, then

    Text Solution

    |

  3. The general solution of the trigonometic equation "sin"x + "cos"x = 1...

    Text Solution

    |

  4. The general solution of equation sin^2 theta sec theta + sqrt3 tan th...

    Text Solution

    |

  5. The solution set of (2"cos"x-1)(3+2"cos"x) = 0 in the interval 0 le x ...

    Text Solution

    |

  6. If tan a theta-tan b theta=0, then prove that the values of theta form...

    Text Solution

    |

  7. If cos p theta+cos q theta=0, then prove that the different values of ...

    Text Solution

    |

  8. If sin5x+sin3x+sinx=0, then the value of x other than zero between 0le...

    Text Solution

    |

  9. The maximum value of sin (x + x/6) + cos (x + pi/6) int eh interval (0...

    Text Solution

    |

  10. If x = X "cos" theta-Y "sin" theta, y = X "sin" theta + Y "cos" theta ...

    Text Solution

    |

  11. The general solution of the equation tan^2 x + 2 sqrt3 tan x = 1is giv...

    Text Solution

    |

  12. Let P= {theta : sin theta - cos theta = sqrt2 cos theta} and Q =...

    Text Solution

    |

  13. For 0 lt theta lt pi/2, the solutions of sigma(m-1)^(6)"cosec"(theta+(...

    Text Solution

    |

  14. The positive integer value of n gt 3 satisfying the equation (1)/(sin(...

    Text Solution

    |

  15. The number of all possible values of theta,where 0 lt thetalt pi for w...

    Text Solution

    |

  16. The number of values of theta in the interval (-(pi)/(2), (pi)/(2)) su...

    Text Solution

    |

  17. If sqrt3cos theta + sin theta = sqrt2 then general value of theta is

    Text Solution

    |

  18. The general solution of sinx-cosx=sqrt(2), for any integer n is

    Text Solution

    |

  19. If tan2theta =1, then the general value of theta is

    Text Solution

    |

  20. The equation a "cos" x - "cos" 2x = 2a-7 passesses a solution if

    Text Solution

    |

  21. General value of theta obtained from the equation cos 2 theta = sin al...

    Text Solution

    |