Home
Class 12
MATHS
If tan theta + sec theta = sqrt3, 0 lt ...

If `tan theta + sec theta = sqrt3, 0 lt theta le pi`, then `theta =`

A

`pi//3`

B

`2pi//3`

C

`pi//6`

D

`5pi//8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \theta + \sec \theta = \sqrt{3} \) for \( 0 < \theta \leq \pi \), we will follow these steps: ### Step 1: Rewrite the equation in terms of sine and cosine We know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \quad \text{and} \quad \sec \theta = \frac{1}{\cos \theta} \] Substituting these into the equation gives: \[ \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} = \sqrt{3} \] Combining the fractions, we have: \[ \frac{\sin \theta + 1}{\cos \theta} = \sqrt{3} \] ### Step 2: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ \sin \theta + 1 = \sqrt{3} \cos \theta \] ### Step 3: Rearrange the equation Rearranging the equation, we have: \[ \sin \theta = \sqrt{3} \cos \theta - 1 \] ### Step 4: Square both sides Squaring both sides to eliminate the square root gives: \[ \sin^2 \theta = (\sqrt{3} \cos \theta - 1)^2 \] Expanding the right side: \[ \sin^2 \theta = 3 \cos^2 \theta - 2\sqrt{3} \cos \theta + 1 \] ### Step 5: Use the Pythagorean identity Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can replace \( \sin^2 \theta \): \[ 1 - \cos^2 \theta = 3 \cos^2 \theta - 2\sqrt{3} \cos \theta + 1 \] Simplifying this gives: \[ - \cos^2 \theta = 3 \cos^2 \theta - 2\sqrt{3} \cos \theta \] Rearranging leads to: \[ 0 = 4 \cos^2 \theta - 2\sqrt{3} \cos \theta \] ### Step 6: Factor the equation Factoring out \( 2 \cos \theta \): \[ 2 \cos \theta (2 \cos \theta - \sqrt{3}) = 0 \] ### Step 7: Solve for \( \cos \theta \) Setting each factor to zero gives: 1. \( 2 \cos \theta = 0 \) → \( \cos \theta = 0 \) 2. \( 2 \cos \theta - \sqrt{3} = 0 \) → \( \cos \theta = \frac{\sqrt{3}}{2} \) ### Step 8: Find the corresponding angles 1. For \( \cos \theta = 0 \): - \( \theta = \frac{\pi}{2} \) 2. For \( \cos \theta = \frac{\sqrt{3}}{2} \): - \( \theta = \frac{\pi}{6} \) (in the first quadrant) - \( \theta = \frac{11\pi}{6} \) (but this is outside the range \( 0 < \theta \leq \pi \)) ### Step 9: Conclusion Thus, the only valid solution in the given range is: \[ \theta = \frac{\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE )|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS )|8 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((fill in the blanks)|1 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

If tan theta+sec theta=sqrt(3),0

If : tan theta - sqrt(2) cdot "sec" theta = sqrt(3) , then : theta =

If tan theta + sec theta = n, then sec ^(4) theta - tan ^(4) theta- 2 sec theta tan theta =

ML KHANNA-TRIGONOMETRICAL EQUATIONS -PROBLEM SET (2) (MULTIPICE CHOICE QUESTIONS)
  1. If "tan" 2 theta "tan" theta =1, "then" theta =

    Text Solution

    |

  2. If sqrt 3 sin theta - cos theta = sqrt2, then theta=

    Text Solution

    |

  3. If tan theta + sec theta = sqrt3, 0 lt theta le pi, then theta =

    Text Solution

    |

  4. If tan theta + sec theta = sqrt3, 0 lt theta le pi, then theta =

    Text Solution

    |

  5. If sin x +cos x =1, then x =

    Text Solution

    |

  6. If sin^3 x + sin x cos x + cos^3 x = 1, then x =

    Text Solution

    |

  7. If csc x = 1 + cot x, then x =

    Text Solution

    |

  8. If sqrt3cos theta + sin theta = 1 " for " -2pi lt theta lt 2pi, then t...

    Text Solution

    |

  9. General solution of the equation (sqrt(3) - 1) sin theta + (sqrt(3) ...

    Text Solution

    |

  10. If max{5sintheta +3sin(theta -alpha)} = 7, then the set of possible va...

    Text Solution

    |

  11. If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ), then sin thet...

    Text Solution

    |

  12. If : sin ((pi)/4 cdot cot theta) = cos ((pi)/4 cdot tan theta), then :...

    Text Solution

    |

  13. If tan theta + tan (theta + pi/3) + tan ( theta + (2pi)/3) = 3, then ...

    Text Solution

    |

  14. Solve cot(x//2)-cosec (x//2)=cot x.

    Text Solution

    |

  15. If cot theta - tan theta = sec theta, then theta=

    Text Solution

    |

  16. Solve tan theta+tan 2 theta+sqrt(3) tan theta tan 2 theta = sqrt(3).

    Text Solution

    |

  17. Solve sin^3thetacostheta-cos^3thetasintheta=1/4dot

    Text Solution

    |

  18. In a right angled triangle the hypotenuse is 2sqrt(2) times the length...

    Text Solution

    |

  19. In a triangle ABC ,angle A is greater than B.If the measures of angles...

    Text Solution

    |

  20. The values of theta satisfying "sin" 7 theta = "sin" 4 theta -"sin" th...

    Text Solution

    |