Home
Class 12
MATHS
If sqrt3cos theta + sin theta = 1 " for ...

If `sqrt3cos theta + sin theta = 1 " for " -2pi lt theta lt 2pi`, then `theta =`

A

`-(3pi)/2`

B

`-pi/6`

C

`pi/2`

D

`(11pi)/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{3} \cos \theta + \sin \theta = 1 \) for \( -2\pi < \theta < 2\pi \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sqrt{3} \cos \theta + \sin \theta = 1 \] ### Step 2: Divide the equation by 2 To simplify the equation, we can divide everything by 2: \[ \frac{\sqrt{3}}{2} \cos \theta + \frac{1}{2} \sin \theta = \frac{1}{2} \] ### Step 3: Use the cosine addition formula Recognizing that \( \frac{\sqrt{3}}{2} = \cos \frac{\pi}{6} \) and \( \frac{1}{2} = \sin \frac{\pi}{6} \), we can rewrite the left-hand side using the cosine addition formula: \[ \cos \left( \theta - \frac{\pi}{6} \right) = \frac{1}{2} \] ### Step 4: Solve for \( \theta - \frac{\pi}{6} \) Now we need to find the angles where the cosine equals \( \frac{1}{2} \): \[ \theta - \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{3}, \quad n \in \mathbb{Z} \] ### Step 5: Find the general solutions for \( \theta \) This gives us two sets of equations: 1. \( \theta - \frac{\pi}{6} = 2n\pi + \frac{\pi}{3} \) 2. \( \theta - \frac{\pi}{6} = 2n\pi - \frac{\pi}{3} \) From these, we can solve for \( \theta \): 1. \( \theta = 2n\pi + \frac{\pi}{3} + \frac{\pi}{6} = 2n\pi + \frac{\pi}{2} \) 2. \( \theta = 2n\pi - \frac{\pi}{3} + \frac{\pi}{6} = 2n\pi - \frac{\pi}{6} \) ### Step 6: Substitute values of \( n \) Now we will substitute \( n = -1, 0, 1 \) to find all possible values of \( \theta \) within the interval \( -2\pi < \theta < 2\pi \). #### For \( n = -1 \): 1. \( \theta = -2\pi + \frac{\pi}{2} = -\frac{3\pi}{2} \) 2. \( \theta = -2\pi - \frac{\pi}{6} = -\frac{13\pi}{6} \) (not valid as it is less than -2π) #### For \( n = 0 \): 1. \( \theta = 0 + \frac{\pi}{2} = \frac{\pi}{2} \) 2. \( \theta = 0 - \frac{\pi}{6} = -\frac{\pi}{6} \) #### For \( n = 1 \): 1. \( \theta = 2\pi + \frac{\pi}{2} = \frac{5\pi}{2} \) (not valid as it is greater than 2π) 2. \( \theta = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6} \) ### Step 7: Collect valid solutions The valid solutions for \( \theta \) in the interval \( -2\pi < \theta < 2\pi \) are: 1. \( -\frac{3\pi}{2} \) 2. \( \frac{\pi}{2} \) 3. \( -\frac{\pi}{6} \) 4. \( \frac{11\pi}{6} \) ### Final Answer Thus, the solutions for \( \theta \) are: \[ \theta = -\frac{3\pi}{2}, \frac{\pi}{2}, -\frac{\pi}{6}, \frac{11\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE )|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS )|8 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((fill in the blanks)|1 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

If 3 sin 2 theta = 2 sin 3 theta and 0 lt theta lt pi , then sin theta =

Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .

If cosec theta - cot theta = 1/2, 0 lt theta lt pi/2, then cos theta is equal to

if 7 cos^(2) theta + 3 sin^2 theta = 4 and 0 lt theta lt (pi)/(2) , then find the value of cot theta

If sin theta + 2 cos theta = 1, where 0 lt theta lt (pi)/(2), then what is 2 sin theta - cos theta equal to ?

If sin theta + 2cos theta = -1 , where 0 lt theta lt pi/2 , what is 2 sin theta - cos theta equal to ?

If 2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@)) then the value of 2sin theta + cos theta is:

If 8 cos 2 theta + 8 sec 2theta = 65, 0 lt theta lt (pi)/(2) then the value of 4 cos 4 theta is

ML KHANNA-TRIGONOMETRICAL EQUATIONS -PROBLEM SET (2) (MULTIPICE CHOICE QUESTIONS)
  1. If sin^3 x + sin x cos x + cos^3 x = 1, then x =

    Text Solution

    |

  2. If csc x = 1 + cot x, then x =

    Text Solution

    |

  3. If sqrt3cos theta + sin theta = 1 " for " -2pi lt theta lt 2pi, then t...

    Text Solution

    |

  4. General solution of the equation (sqrt(3) - 1) sin theta + (sqrt(3) ...

    Text Solution

    |

  5. If max{5sintheta +3sin(theta -alpha)} = 7, then the set of possible va...

    Text Solution

    |

  6. If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ), then sin thet...

    Text Solution

    |

  7. If : sin ((pi)/4 cdot cot theta) = cos ((pi)/4 cdot tan theta), then :...

    Text Solution

    |

  8. If tan theta + tan (theta + pi/3) + tan ( theta + (2pi)/3) = 3, then ...

    Text Solution

    |

  9. Solve cot(x//2)-cosec (x//2)=cot x.

    Text Solution

    |

  10. If cot theta - tan theta = sec theta, then theta=

    Text Solution

    |

  11. Solve tan theta+tan 2 theta+sqrt(3) tan theta tan 2 theta = sqrt(3).

    Text Solution

    |

  12. Solve sin^3thetacostheta-cos^3thetasintheta=1/4dot

    Text Solution

    |

  13. In a right angled triangle the hypotenuse is 2sqrt(2) times the length...

    Text Solution

    |

  14. In a triangle ABC ,angle A is greater than B.If the measures of angles...

    Text Solution

    |

  15. The values of theta satisfying "sin" 7 theta = "sin" 4 theta -"sin" th...

    Text Solution

    |

  16. If sin theta + sin 3 theta + sin 5theta = 0, 0 le theta le pi//2, then...

    Text Solution

    |

  17. If sin 6 x= sin 4x - sin 2x , then x =

    Text Solution

    |

  18. Solve cos theta+cos 7 theta+cos 3theta+cos 5 theta=0,

    Text Solution

    |

  19. If sin 7 theta + sin 4 theta + sin theta = 0, 0 le theta le pi //2 th...

    Text Solution

    |

  20. If "tan" (pi "cos" theta) = "cot"(pi "sin" theta), then the value(s) ...

    Text Solution

    |