Home
Class 12
MATHS
If (1 - tan x)/(1 + tan x) = tan y and x...

If `(1 - tan x)/(1 + tan x) = tan y and x - y = pi/6` , then x, y are respectively

A

`(5pi)/24, pi/24`

B

`-(7pi)/24, -(11pi)/24`

C

`-(115pi)/24- (119pi)/24`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((1 - \tan x)/(1 + \tan x) = \tan y\) given that \(x - y = \frac{\pi}{6}\), we can follow these steps: ### Step 1: Use the tangent subtraction formula We know that: \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \] We can rewrite the left side of the equation using the tangent subtraction formula: \[ \frac{1 - \tan x}{1 + \tan x} = \tan\left(\frac{\pi}{4} - x\right) \] Thus, we can equate: \[ \tan\left(\frac{\pi}{4} - x\right) = \tan y \] ### Step 2: Set the angles equal Since the tangent function is periodic, we can set the angles equal to each other: \[ \frac{\pi}{4} - x = y + n\pi \quad (n \in \mathbb{Z}) \] For simplicity, we will consider \(n = 0\): \[ \frac{\pi}{4} - x = y \] ### Step 3: Substitute \(y\) in the given equation We have two equations now: 1. \(x - y = \frac{\pi}{6}\) 2. \(\frac{\pi}{4} - x = y\) Substituting \(y\) from the second equation into the first: \[ x - \left(\frac{\pi}{4} - x\right) = \frac{\pi}{6} \] This simplifies to: \[ x + x - \frac{\pi}{4} = \frac{\pi}{6} \] \[ 2x - \frac{\pi}{4} = \frac{\pi}{6} \] ### Step 4: Solve for \(x\) To solve for \(x\), we first find a common denominator for \(\frac{\pi}{4}\) and \(\frac{\pi}{6}\): The least common multiple of 4 and 6 is 12. Thus: \[ \frac{\pi}{4} = \frac{3\pi}{12}, \quad \frac{\pi}{6} = \frac{2\pi}{12} \] Substituting these values gives: \[ 2x - \frac{3\pi}{12} = \frac{2\pi}{12} \] Adding \(\frac{3\pi}{12}\) to both sides: \[ 2x = \frac{2\pi}{12} + \frac{3\pi}{12} = \frac{5\pi}{12} \] Dividing by 2: \[ x = \frac{5\pi}{24} \] ### Step 5: Find \(y\) Now substituting \(x\) back into the equation for \(y\): \[ y = \frac{\pi}{4} - x = \frac{\pi}{4} - \frac{5\pi}{24} \] Finding a common denominator for \(\frac{\pi}{4}\): \[ \frac{\pi}{4} = \frac{6\pi}{24} \] Thus: \[ y = \frac{6\pi}{24} - \frac{5\pi}{24} = \frac{\pi}{24} \] ### Final Result The values of \(x\) and \(y\) are: \[ x = \frac{5\pi}{24}, \quad y = \frac{\pi}{24} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE )|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS )|8 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (1) ((fill in the blanks)|1 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

(1-tan x) / (1 + tan x) = tan y and xy = (pi) / (6), thenx, y

tan(x+y)=(tan x+tan y)/(1-tan x tan y)

(tan(x+y)-tan x)/(1+tan(x+y)tan x)=tan y

(tan(x+y)-tan x)/(1+tan(x+y)tan x)=tan y

If tan(x+y)=33 , and x= tan^(-1)3 , then: y=

(tan x) / (1) = (tan y) / (2) = (tan x) / (3) (! = 0) and x + y + z = pi

If quad y + z = pi, tan x tan y = 2 and tan x + tan y + tan z = 6 then z =

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

ML KHANNA-TRIGONOMETRICAL EQUATIONS -PROBLEM SET (2) (MULTIPICE CHOICE QUESTIONS)
  1. Solve cot(x//2)-cosec (x//2)=cot x.

    Text Solution

    |

  2. If cot theta - tan theta = sec theta, then theta=

    Text Solution

    |

  3. Solve tan theta+tan 2 theta+sqrt(3) tan theta tan 2 theta = sqrt(3).

    Text Solution

    |

  4. Solve sin^3thetacostheta-cos^3thetasintheta=1/4dot

    Text Solution

    |

  5. In a right angled triangle the hypotenuse is 2sqrt(2) times the length...

    Text Solution

    |

  6. In a triangle ABC ,angle A is greater than B.If the measures of angles...

    Text Solution

    |

  7. The values of theta satisfying "sin" 7 theta = "sin" 4 theta -"sin" th...

    Text Solution

    |

  8. If sin theta + sin 3 theta + sin 5theta = 0, 0 le theta le pi//2, then...

    Text Solution

    |

  9. If sin 6 x= sin 4x - sin 2x , then x =

    Text Solution

    |

  10. Solve cos theta+cos 7 theta+cos 3theta+cos 5 theta=0,

    Text Solution

    |

  11. If sin 7 theta + sin 4 theta + sin theta = 0, 0 le theta le pi //2 th...

    Text Solution

    |

  12. If "tan" (pi "cos" theta) = "cot"(pi "sin" theta), then the value(s) ...

    Text Solution

    |

  13. Solve sec 4 theta- sec 2 theta=2.

    Text Solution

    |

  14. If: tan theta + tan 2theta = tan 3theta, then: theta=

    Text Solution

    |

  15. General solution of the equation 4 cot 2 theta = cot^(2) theta - tan...

    Text Solution

    |

  16. If 3 tan ( theta -15^@) =- tan ( theta + 15^@) , then theta =

    Text Solution

    |

  17. If tan 3 theta + tan theta =2 tan 2 theta, then theta is equal to (n i...

    Text Solution

    |

  18. Solve sinx+siny=sin(x+y)a n d|x|+|y|=1

    Text Solution

    |

  19. If (1 - tan x)/(1 + tan x) = tan y and x - y = pi/6 , then x, y are re...

    Text Solution

    |

  20. If "sin" A = "sin"B, "cos"A = "cos"B, then the value of A im terms of ...

    Text Solution

    |