Home
Class 12
MATHS
If e^({(sin^2 x + sin^4x + sin^6x+...oo)...

If `e^({(sin^2 x + sin^4x + sin^6x+...oo)log_e2})`satisfies the equation `x^2 - 9x + 8 = 0` , then value of
`(cosx)/(cosx+sinx ), 0 le x le pi/2` is

A

`1/2 (sqrt3+1)`

B

`1/2(sqrt3 -1)`

C

`1/2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the reasoning outlined in the video transcript and derive the solution systematically. ### Step 1: Calculate the Infinite Series We start with the infinite series given by: \[ \sin^2 x + \sin^4 x + \sin^6 x + \ldots \] This series can be recognized as a geometric series where: - The first term \( a = \sin^2 x \) - The common ratio \( r = \sin^2 x \) The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} = \frac{\sin^2 x}{1 - \sin^2 x} = \frac{\sin^2 x}{\cos^2 x} = \tan^2 x \] ### Step 2: Substitute into the Exponential Expression Now, we substitute this result into the expression: \[ e^{(\sin^2 x + \sin^4 x + \sin^6 x + \ldots) \log_e 2} = e^{\tan^2 x \log_e 2} \] Using the property of exponents, we can simplify this to: \[ = 2^{\tan^2 x} \] ### Step 3: Set Up the Quadratic Equation We know that this expression satisfies the quadratic equation: \[ x^2 - 9x + 8 = 0 \] To find the roots of this equation, we can factor it: \[ (x - 8)(x - 1) = 0 \] Thus, the roots are: \[ x = 8 \quad \text{and} \quad x = 1 \] ### Step 4: Solve for \( \tan^2 x \) Now, we set the expression \( 2^{\tan^2 x} \) equal to the roots: 1. For \( 2^{\tan^2 x} = 8 \): \[ \tan^2 x = 3 \quad \Rightarrow \quad \tan x = \sqrt{3} \quad \Rightarrow \quad x = \frac{\pi}{3} \] 2. For \( 2^{\tan^2 x} = 1 \): \[ \tan^2 x = 0 \quad \Rightarrow \quad \tan x = 0 \quad \Rightarrow \quad x = 0 \] ### Step 5: Calculate \( \frac{\cos x}{\cos x + \sin x} \) Next, we need to evaluate: \[ \frac{\cos x}{\cos x + \sin x} \] #### Case 1: When \( x = \frac{\pi}{3} \) \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Thus, \[ \frac{\cos\left(\frac{\pi}{3}\right)}{\cos\left(\frac{\pi}{3}\right) + \sin\left(\frac{\pi}{3}\right)} = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{\sqrt{3}}{2}} = \frac{\frac{1}{2}}{\frac{1 + \sqrt{3}}{2}} = \frac{1}{1 + \sqrt{3}} \] To rationalize the denominator: \[ \frac{1}{1 + \sqrt{3}} \cdot \frac{1 - \sqrt{3}}{1 - \sqrt{3}} = \frac{1 - \sqrt{3}}{1 - 3} = \frac{1 - \sqrt{3}}{-2} = \frac{\sqrt{3} - 1}{2} \] #### Case 2: When \( x = 0 \) \[ \cos(0) = 1, \quad \sin(0) = 0 \] Thus, \[ \frac{\cos(0)}{\cos(0) + \sin(0)} = \frac{1}{1 + 0} = 1 \] ### Final Result The values we found are: - For \( x = \frac{\pi}{3} \): \( \frac{\sqrt{3} - 1}{2} \) - For \( x = 0 \): \( 1 \) Since both values are valid within the interval \( [0, \frac{\pi}{2}] \), the final answer can be expressed as: \[ \text{The value of } \frac{\cos x}{\cos x + \sin x} \text{ is } \frac{\sqrt{3} - 1}{2} \text{ or } 1. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (3) (TRUE AND FALSE )|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS )|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS )|8 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

If e^((sin^(2)x+sin^(4)x+sin^(6)x+...oo)ln2) satisfies the equation x^(2)-9x+8=0 find the value of (cos x)/(cos x+sin x),0

If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the equation y^(2)-9y+8=0 , then the value of (cos x )/( cos x+ sin x ),0 lt x lt (pi)/(2) , is

If e^(( cos^2 x + cos^4x+ cos ^6 x + ……..oo ) log_e 2) satisfies the equation t^2 - 9t + 8=0 , then the value of ( 2 sin x)/( sin x + sqrt(3) cos x) ( 0 lt x lt (pi)/(2)) is

If exp [sin^(2)x+sin^(4)x+sin^(6)x+….infty)ln 2] satisfies the equation y^(2)-9y+8=0 and the value of (cosx)/(cos x+sin x),0 lt x lt (pi)/(2) is (1)/(1+sqrt(k)) then the value of k is _________

If exp(sin^(2)x+sin^(4)x+sin^(6)x....... upto oo)log_(e)2 satisfies the equation x^(2)-17x+16=0 then the value of (2cos x)/(sin x+2cos x),(0

If 0ltxlt(pi)/(2) exp [(sin^(2)x+sin^(4)x+sin^(6)x+'.....+oo)log_(e)2] satisfies the quadratic equation x^(2)-9x+8=0 , find the value of (sinx-cosx)/(sinx+cosx) .

Statement -1:If exp {("sin"^(2)x + "sin"^(4)x + "sin"^(6)x +…)"log"_(e)2] " satisfie the equation" x^(2)-9x +8=0, "then " ("cos"x)/("cos" x + "sin"x) = (sqrt(3)-1)/(2), 0 lt x lt (pi)/(2) . Statement-2: The sum "sin"^(2) x + "sin"^(4)x + "sin"^(6) x + .... oo is equal to "tan"^(2)x

ML KHANNA-TRIGONOMETRICAL EQUATIONS -PROBLEM SET (3) (MULTIPLE CHOICE QUESTIONS)
  1. Find the values of x in (-pi,pi) which satisfy the equation 8^(1+|cosx...

    Text Solution

    |

  2. Find the most general solution of 2^1|cosx|+cos^2x+|cosx|^(3+oo)=4

    Text Solution

    |

  3. If e^({(sin^2 x + sin^4x + sin^6x+...oo)loge2})satisfies the equation ...

    Text Solution

    |

  4. If the the equation a sin x + cos 2x=2a-7 possesses a solution, then f...

    Text Solution

    |

  5. The value of theta lying between theta = 0 and theta = pi/2 and satis...

    Text Solution

    |

  6. The number of all triplets (a1,a2,a3) such that a1 + a2 cos 2x + a3 si...

    Text Solution

    |

  7. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  8. The equation (cos p-1) x^(2) + cos p*x + sin p = 0 where x is a varia...

    Text Solution

    |

  9. If A,B,C the angles of a triangle be in A.P. and satisfy the relations...

    Text Solution

    |

  10. The number of solution(s) of 2cos^(2)(x/2)sin^(2)x=x^(2)+1/x^(2), 0 le...

    Text Solution

    |

  11. The solution of the equation e^(sinx) -e^(-sinx)-4 = 0 is :

    Text Solution

    |

  12. One value of theta which satisfies the equation sin^(4)theta-2sin^(2)t...

    Text Solution

    |

  13. The number of solutions of the equation sin^3x cos x + sin^2 x cos^2x ...

    Text Solution

    |

  14. The number of solutionsof the equation 1 +sin x sin^2 ""(x)/2 = 0 i...

    Text Solution

    |

  15. If 0le x le pi and 81^(sin^2 x) + 81^(cos^2x) = 30, then x is equal to

    Text Solution

    |

  16. If 3^(sin2x + 2cos^2x) + 3^(1-sin2x + 2sin^2x) = 28 , then the values ...

    Text Solution

    |

  17. Solve 2^(cos 2x)+1=3.2^(-sin^(2) x)

    Text Solution

    |

  18. The equation sin^(4) x + cos^(4) x + sin 2x + k = 0 must have real s...

    Text Solution

    |

  19. The equation sin^4 x - 2cos^2 x + a^2 = 0 is solveble if

    Text Solution

    |

  20. Solve: log(cosx) sin x + log(sin x) cos x = 2.

    Text Solution

    |