Home
Class 12
MATHS
If A,B,C the angles of a triangle be in ...

If A,B,C the angles of a triangle be in A.P. and satisfy the relations
`sin(2A + B) = sin (C -A) = -sin(B + 2C) = 1/2`,
then the values of A,B,C are respectively

A

`45^@, 75^@, 60^@`

B

`75^@, 60^@,45^@`

C

`60^@, 60^@, 60^@`

D

`45^@, 60^@, 75^@`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angles \( A, B, C \) of a triangle that are in Arithmetic Progression (A.P.) and satisfy the conditions given by the equations: 1. \( \sin(2A + B) = \frac{1}{2} \) 2. \( \sin(C - A) = \frac{1}{2} \) 3. \( -\sin(B + 2C) = \frac{1}{2} \) Since \( A, B, C \) are angles of a triangle, we know that \( A + B + C = 180^\circ \). ### Step 1: Express B and C in terms of A Since \( A, B, C \) are in A.P., we can express \( B \) and \( C \) as: - \( B = A + d \) - \( C = A + 2d \) Where \( d \) is the common difference. From the triangle angle sum property: \[ A + (A + d) + (A + 2d) = 180^\circ \] This simplifies to: \[ 3A + 3d = 180^\circ \implies A + d = 60^\circ \] Thus, we have: \[ B = 60^\circ \quad \text{and} \quad C = 120^\circ - A \] ### Step 2: Solve the first equation Using the first equation \( \sin(2A + B) = \frac{1}{2} \): \[ \sin(2A + 60^\circ) = \frac{1}{2} \] The angles for which \( \sin x = \frac{1}{2} \) are \( x = 30^\circ + n \cdot 360^\circ \) and \( x = 150^\circ + n \cdot 360^\circ \). Setting \( 2A + 60^\circ = 30^\circ \): \[ 2A = 30^\circ - 60^\circ \implies 2A = -30^\circ \quad \text{(not possible)} \] Setting \( 2A + 60^\circ = 150^\circ \): \[ 2A = 150^\circ - 60^\circ \implies 2A = 90^\circ \implies A = 45^\circ \] ### Step 3: Find B and C Now substituting \( A = 45^\circ \) back into the expressions for \( B \) and \( C \): \[ B = 60^\circ \quad \text{and} \quad C = 120^\circ - 45^\circ = 75^\circ \] ### Step 4: Verify with the second equation Now we check the second equation \( \sin(C - A) = \frac{1}{2} \): \[ C - A = 75^\circ - 45^\circ = 30^\circ \] \[ \sin(30^\circ) = \frac{1}{2} \quad \text{(True)} \] ### Step 5: Verify with the third equation Now check the third equation \( -\sin(B + 2C) = \frac{1}{2} \): \[ B + 2C = 60^\circ + 2 \times 75^\circ = 60^\circ + 150^\circ = 210^\circ \] \[ -\sin(210^\circ) = -(-\frac{1}{2}) = \frac{1}{2} \quad \text{(True)} \] ### Conclusion Thus, the values of \( A, B, C \) are: \[ A = 45^\circ, \quad B = 60^\circ, \quad C = 75^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (3) (TRUE AND FALSE )|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS )|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS )|8 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

ABC is a triangle such that sin(2A+B)=sin(C-A)=-sin(B+2C)=(1)/(2)*If(2A, and C are in AP.then the value of A,B and C are..

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

A triangle ABC is such that sin(2A+B)= 1/2 . If A,B,C are inA.P. then the angle A,B,C are repectively

If A,B,C are the angles of a triangle then maximum value of C and sin A sin B sin C occurs when A=B=C=60^(@)

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

If A, B, C are angles of a triangle, then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC=?

In a triangle ABC, if a, b, c are in A.P. and (b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2 , then find the value of sin B

ML KHANNA-TRIGONOMETRICAL EQUATIONS -PROBLEM SET (3) (MULTIPLE CHOICE QUESTIONS)
  1. The value of theta lying between theta = 0 and theta = pi/2 and satis...

    Text Solution

    |

  2. The number of all triplets (a1,a2,a3) such that a1 + a2 cos 2x + a3 si...

    Text Solution

    |

  3. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  4. The equation (cos p-1) x^(2) + cos p*x + sin p = 0 where x is a varia...

    Text Solution

    |

  5. If A,B,C the angles of a triangle be in A.P. and satisfy the relations...

    Text Solution

    |

  6. The number of solution(s) of 2cos^(2)(x/2)sin^(2)x=x^(2)+1/x^(2), 0 le...

    Text Solution

    |

  7. The solution of the equation e^(sinx) -e^(-sinx)-4 = 0 is :

    Text Solution

    |

  8. One value of theta which satisfies the equation sin^(4)theta-2sin^(2)t...

    Text Solution

    |

  9. The number of solutions of the equation sin^3x cos x + sin^2 x cos^2x ...

    Text Solution

    |

  10. The number of solutionsof the equation 1 +sin x sin^2 ""(x)/2 = 0 i...

    Text Solution

    |

  11. If 0le x le pi and 81^(sin^2 x) + 81^(cos^2x) = 30, then x is equal to

    Text Solution

    |

  12. If 3^(sin2x + 2cos^2x) + 3^(1-sin2x + 2sin^2x) = 28 , then the values ...

    Text Solution

    |

  13. Solve 2^(cos 2x)+1=3.2^(-sin^(2) x)

    Text Solution

    |

  14. The equation sin^(4) x + cos^(4) x + sin 2x + k = 0 must have real s...

    Text Solution

    |

  15. The equation sin^4 x - 2cos^2 x + a^2 = 0 is solveble if

    Text Solution

    |

  16. Solve: log(cosx) sin x + log(sin x) cos x = 2.

    Text Solution

    |

  17. If log(cosx)tan x + log(sinx) cot x = 0, then the most general value o...

    Text Solution

    |

  18. If abs(cos x)^(sin^2 x - 3/2 sin x + 1/2) = 1, then possible values ...

    Text Solution

    |

  19. Find all values of theta in the interva (-pi/2,pi/2) satisfying the eq...

    Text Solution

    |

  20. The value of x between 0 and2pi which satisfy the equation sinx.sqrt(8...

    Text Solution

    |