Home
Class 12
MATHS
If 0le x le pi and 81^(sin^2 x) + 81^(co...

If `0le x le pi` and `81^(sin^2 x) + 81^(cos^2x) = 30`, then x is equal to

A

`pi//6`

B

`pi//3`

C

`5pi//6`

D

`2pi//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 81^{\sin^2 x} + 81^{\cos^2 x} = 30 \) for \( 0 \leq x \leq \pi \), we can follow these steps: ### Step 1: Rewrite the equation We know that \( \sin^2 x + \cos^2 x = 1 \). Therefore, we can express \( \cos^2 x \) as \( 1 - \sin^2 x \): \[ 81^{\sin^2 x} + 81^{1 - \sin^2 x} = 30 \] ### Step 2: Simplify the equation Let \( y = 81^{\sin^2 x} \). Then, we can rewrite the equation as: \[ y + 81^{1 - \sin^2 x} = 30 \] Since \( 81^{1 - \sin^2 x} = \frac{81}{y} \), we can substitute this into the equation: \[ y + \frac{81}{y} = 30 \] ### Step 3: Multiply through by \( y \) To eliminate the fraction, multiply the entire equation by \( y \): \[ y^2 + 81 = 30y \] ### Step 4: Rearrange the equation Rearranging gives us a standard quadratic equation: \[ y^2 - 30y + 81 = 0 \] ### Step 5: Solve the quadratic equation We can use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -30, c = 81 \): \[ y = \frac{30 \pm \sqrt{(-30)^2 - 4 \cdot 1 \cdot 81}}{2 \cdot 1} \] \[ y = \frac{30 \pm \sqrt{900 - 324}}{2} \] \[ y = \frac{30 \pm \sqrt{576}}{2} \] \[ y = \frac{30 \pm 24}{2} \] ### Step 6: Calculate the values of \( y \) Calculating the two possible values: 1. \( y = \frac{54}{2} = 27 \) 2. \( y = \frac{6}{2} = 3 \) ### Step 7: Convert back to \( \sin^2 x \) Recall that \( y = 81^{\sin^2 x} \): 1. For \( y = 27 \): \[ 81^{\sin^2 x} = 27 \implies 3^{4\sin^2 x} = 3^3 \implies 4\sin^2 x = 3 \implies \sin^2 x = \frac{3}{4} \] Thus, \( \sin x = \frac{\sqrt{3}}{2} \) or \( \sin x = -\frac{\sqrt{3}}{2} \) (but we discard the negative in the range \( 0 \leq x \leq \pi \)): \[ x = \frac{\pi}{3} \] 2. For \( y = 3 \): \[ 81^{\sin^2 x} = 3 \implies 3^{4\sin^2 x} = 3^1 \implies 4\sin^2 x = 1 \implies \sin^2 x = \frac{1}{4} \] Thus, \( \sin x = \frac{1}{2} \) or \( \sin x = -\frac{1}{2} \) (again, we discard the negative): \[ x = \frac{\pi}{6} \quad \text{or} \quad x = \frac{5\pi}{6} \] ### Step 8: List all solutions The solutions for \( x \) in the interval \( [0, \pi] \) are: \[ x = \frac{\pi}{3}, \quad x = \frac{\pi}{6}, \quad x = \frac{5\pi}{6} \] ### Final Answer Thus, the values of \( x \) that satisfy the equation are: \[ x = \frac{\pi}{3}, \quad x = \frac{\pi}{6}, \quad x = \frac{5\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (3) (TRUE AND FALSE )|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS )|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS )|8 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

if 0<=x<=pi and 81^( sin ^(2)x)+81^(cos^(2)x)=30 then x=

If 81^(sin^2 x) + 81^(cos^2 x) = 30 , where (pi//2) le x le pi , then x =

The number of roots of the equation, (81) ^( sin ^(2)x) + (81) ^( cos ^(2)x) x = 30 in the interval [0, pi ] is equal to :

If 0 le x le 2pi and |cos x | le sin x , the

If sin x+ cos x =1/5 and 0 le x le pi, then tan x is equal to

If 0 le x, y le 2 pi "and cos"x + "cos" y = -2, " then "cos" (x+y)=

ML KHANNA-TRIGONOMETRICAL EQUATIONS -PROBLEM SET (3) (MULTIPLE CHOICE QUESTIONS)
  1. The value of theta lying between theta = 0 and theta = pi/2 and satis...

    Text Solution

    |

  2. The number of all triplets (a1,a2,a3) such that a1 + a2 cos 2x + a3 si...

    Text Solution

    |

  3. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  4. The equation (cos p-1) x^(2) + cos p*x + sin p = 0 where x is a varia...

    Text Solution

    |

  5. If A,B,C the angles of a triangle be in A.P. and satisfy the relations...

    Text Solution

    |

  6. The number of solution(s) of 2cos^(2)(x/2)sin^(2)x=x^(2)+1/x^(2), 0 le...

    Text Solution

    |

  7. The solution of the equation e^(sinx) -e^(-sinx)-4 = 0 is :

    Text Solution

    |

  8. One value of theta which satisfies the equation sin^(4)theta-2sin^(2)t...

    Text Solution

    |

  9. The number of solutions of the equation sin^3x cos x + sin^2 x cos^2x ...

    Text Solution

    |

  10. The number of solutionsof the equation 1 +sin x sin^2 ""(x)/2 = 0 i...

    Text Solution

    |

  11. If 0le x le pi and 81^(sin^2 x) + 81^(cos^2x) = 30, then x is equal to

    Text Solution

    |

  12. If 3^(sin2x + 2cos^2x) + 3^(1-sin2x + 2sin^2x) = 28 , then the values ...

    Text Solution

    |

  13. Solve 2^(cos 2x)+1=3.2^(-sin^(2) x)

    Text Solution

    |

  14. The equation sin^(4) x + cos^(4) x + sin 2x + k = 0 must have real s...

    Text Solution

    |

  15. The equation sin^4 x - 2cos^2 x + a^2 = 0 is solveble if

    Text Solution

    |

  16. Solve: log(cosx) sin x + log(sin x) cos x = 2.

    Text Solution

    |

  17. If log(cosx)tan x + log(sinx) cot x = 0, then the most general value o...

    Text Solution

    |

  18. If abs(cos x)^(sin^2 x - 3/2 sin x + 1/2) = 1, then possible values ...

    Text Solution

    |

  19. Find all values of theta in the interva (-pi/2,pi/2) satisfying the eq...

    Text Solution

    |

  20. The value of x between 0 and2pi which satisfy the equation sinx.sqrt(8...

    Text Solution

    |