Home
Class 12
MATHS
If 3^(sin2x + 2cos^2x) + 3^(1-sin2x + 2s...

If `3^(sin2x + 2cos^2x) + 3^(1-sin2x + 2sin^2x) = 28` , then the values of x are given by

A

`tan x = 1`

B

`tan x =-1`

C

`cos x = 0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3^{\sin 2x + 2\cos^2 x} + 3^{1 - \sin 2x + 2\sin^2 x} = 28\), we will follow these steps: ### Step 1: Simplify the Equation We start with the given equation: \[ 3^{\sin 2x + 2\cos^2 x} + 3^{1 - \sin 2x + 2\sin^2 x} = 28 \] ### Step 2: Substitute \( \sin^2 x \) and \( \cos^2 x \) Recall that \( \sin^2 x + \cos^2 x = 1 \). Thus, we can express \( \sin^2 x \) in terms of \( \cos^2 x \): \[ \sin^2 x = 1 - \cos^2 x \] Substituting this into the equation: \[ 3^{\sin 2x + 2\cos^2 x} + 3^{1 - \sin 2x + 2(1 - \cos^2 x)} = 28 \] This simplifies to: \[ 3^{\sin 2x + 2\cos^2 x} + 3^{1 - \sin 2x + 2 - 2\cos^2 x} = 28 \] \[ 3^{\sin 2x + 2\cos^2 x} + 3^{3 - \sin 2x - 2\cos^2 x} = 28 \] ### Step 3: Let \( y = 3^{\sin 2x + 2\cos^2 x} \) Now, we can rewrite the equation as: \[ y + \frac{27}{y} = 28 \] Multiplying through by \( y \) gives: \[ y^2 + 27 = 28y \] Rearranging this gives us a quadratic equation: \[ y^2 - 28y + 27 = 0 \] ### Step 4: Solve the Quadratic Equation Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{28 \pm \sqrt{28^2 - 4 \cdot 1 \cdot 27}}{2 \cdot 1} \] Calculating the discriminant: \[ 28^2 - 4 \cdot 27 = 784 - 108 = 676 \] Thus: \[ y = \frac{28 \pm 26}{2} \] Calculating the two possible values for \( y \): 1. \( y = \frac{54}{2} = 27 \) 2. \( y = \frac{2}{2} = 1 \) ### Step 5: Find Values of \( x \) Now we have two cases for \( y \): 1. **Case 1**: \( y = 27 \) \[ 3^{\sin 2x + 2\cos^2 x} = 27 \implies \sin 2x + 2\cos^2 x = 3 \] Since \( \sin 2x \) can only take values between -1 and 1, this case is not possible. 2. **Case 2**: \( y = 1 \) \[ 3^{\sin 2x + 2\cos^2 x} = 1 \implies \sin 2x + 2\cos^2 x = 0 \] This implies: \[ \sin 2x = -2\cos^2 x \] Using \( \sin 2x = 2\sin x \cos x \): \[ 2\sin x \cos x = -2\cos^2 x \] Dividing by 2 and rearranging gives: \[ \sin x + \cos x = 0 \implies \tan x = -1 \] ### Step 6: Solve for \( x \) The general solution for \( \tan x = -1 \) is: \[ x = \frac{3\pi}{4} + n\pi, \quad n \in \mathbb{Z} \] ### Final Answer The values of \( x \) are: \[ x = \frac{3\pi}{4} + n\pi, \quad n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (3) (TRUE AND FALSE )|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS )|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS )|8 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

The equation 3^("sin"2x + 2"cos"^(2)x) + 3^(1-"sin"2x +2"sin"^(2)x) = 28 is satisfied for the values of x given by

If 3cos x+2cos3x=cos y3sin x+2sin3x=sin y, then the value of cos2x is

If int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=a sin2x+C then a=

int(sin2x-cos2x)/(sin2x*cos2x)dx=?

If sin^(-1)x+sin^(-1)y=(pi)/(2) and sin2x=cos2y then the value of x is and sin2x=cos2y

int(sin2x)/(3-2 cos2x)dx

Solve the equation 4^(sin2x+2cos^(2)x)+4^(1-sin2x+2sin^(2)x)=65

cos3x-sin2x=0

ML KHANNA-TRIGONOMETRICAL EQUATIONS -PROBLEM SET (3) (MULTIPLE CHOICE QUESTIONS)
  1. The value of theta lying between theta = 0 and theta = pi/2 and satis...

    Text Solution

    |

  2. The number of all triplets (a1,a2,a3) such that a1 + a2 cos 2x + a3 si...

    Text Solution

    |

  3. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  4. The equation (cos p-1) x^(2) + cos p*x + sin p = 0 where x is a varia...

    Text Solution

    |

  5. If A,B,C the angles of a triangle be in A.P. and satisfy the relations...

    Text Solution

    |

  6. The number of solution(s) of 2cos^(2)(x/2)sin^(2)x=x^(2)+1/x^(2), 0 le...

    Text Solution

    |

  7. The solution of the equation e^(sinx) -e^(-sinx)-4 = 0 is :

    Text Solution

    |

  8. One value of theta which satisfies the equation sin^(4)theta-2sin^(2)t...

    Text Solution

    |

  9. The number of solutions of the equation sin^3x cos x + sin^2 x cos^2x ...

    Text Solution

    |

  10. The number of solutionsof the equation 1 +sin x sin^2 ""(x)/2 = 0 i...

    Text Solution

    |

  11. If 0le x le pi and 81^(sin^2 x) + 81^(cos^2x) = 30, then x is equal to

    Text Solution

    |

  12. If 3^(sin2x + 2cos^2x) + 3^(1-sin2x + 2sin^2x) = 28 , then the values ...

    Text Solution

    |

  13. Solve 2^(cos 2x)+1=3.2^(-sin^(2) x)

    Text Solution

    |

  14. The equation sin^(4) x + cos^(4) x + sin 2x + k = 0 must have real s...

    Text Solution

    |

  15. The equation sin^4 x - 2cos^2 x + a^2 = 0 is solveble if

    Text Solution

    |

  16. Solve: log(cosx) sin x + log(sin x) cos x = 2.

    Text Solution

    |

  17. If log(cosx)tan x + log(sinx) cot x = 0, then the most general value o...

    Text Solution

    |

  18. If abs(cos x)^(sin^2 x - 3/2 sin x + 1/2) = 1, then possible values ...

    Text Solution

    |

  19. Find all values of theta in the interva (-pi/2,pi/2) satisfying the eq...

    Text Solution

    |

  20. The value of x between 0 and2pi which satisfy the equation sinx.sqrt(8...

    Text Solution

    |