Home
Class 12
MATHS
If abs(cos x)^(sin^2 x - 3/2 sin x + 1/...

If
`abs(cos x)^(sin^2 x - 3/2 sin x + 1/2) = 1`,
then possible values of x are

A

`n pi or n pi + (-1)^n pi //6, n in I`

B

`n pi or 2 n pi + pi//2or npi + (-1)^n pi//6, n in I`

C

`n pi + (-1)^n pi //6, n in I`.

D

`n pi , n in I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( |\cos x|^{\sin^2 x - \frac{3}{2} \sin x + \frac{1}{2}} = 1 \), we can analyze the conditions under which the expression equals 1. ### Step 1: Analyze the equation The expression \( |a|^b = 1 \) can be true under the following conditions: 1. \( |a| = 1 \) (i.e., \( a = 1 \) or \( a = -1 \)) 2. \( b = 0 \) (i.e., the exponent is zero) ### Step 2: Case 1 - \( |\cos x| = 1 \) If \( |\cos x| = 1 \), then \( \cos x = 1 \) or \( \cos x = -1 \). - **For \( \cos x = 1 \)**: \[ x = 2n\pi \quad (n \in \mathbb{Z}) \] - **For \( \cos x = -1 \)**: \[ x = (2n + 1)\pi \quad (n \in \mathbb{Z}) \] ### Step 3: Case 2 - \( \sin^2 x - \frac{3}{2} \sin x + \frac{1}{2} = 0 \) Next, we solve the quadratic equation: \[ \sin^2 x - \frac{3}{2} \sin x + \frac{1}{2} = 0 \] Using the quadratic formula: \[ \sin x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -\frac{3}{2}, c = \frac{1}{2} \). Calculating the discriminant: \[ b^2 - 4ac = \left(-\frac{3}{2}\right)^2 - 4 \cdot 1 \cdot \frac{1}{2} = \frac{9}{4} - 2 = \frac{1}{4} \] Now substituting into the quadratic formula: \[ \sin x = \frac{\frac{3}{2} \pm \frac{1}{2}}{2} \] This gives us: 1. \( \sin x = \frac{2}{2} = 1 \) 2. \( \sin x = \frac{1}{2} \) ### Step 4: Solve for \( \sin x = 1 \) For \( \sin x = 1 \): \[ x = \frac{\pi}{2} + 2n\pi \quad (n \in \mathbb{Z}) \] However, we cannot use this solution because at \( x = \frac{\pi}{2} \), \( \cos x = 0 \), which does not satisfy \( |\cos x| = 1 \). ### Step 5: Solve for \( \sin x = \frac{1}{2} \) For \( \sin x = \frac{1}{2} \): \[ x = \frac{\pi}{6} + 2n\pi \quad \text{or} \quad x = \frac{5\pi}{6} + 2n\pi \quad (n \in \mathbb{Z}) \] ### Final Solution Combining all the results, the possible values of \( x \) are: 1. \( x = 2n\pi \) (from \( \cos x = 1 \)) 2. \( x = (2n + 1)\pi \) (from \( \cos x = -1 \)) 3. \( x = \frac{\pi}{6} + 2n\pi \) 4. \( x = \frac{5\pi}{6} + 2n\pi \)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (3) (TRUE AND FALSE )|1 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS )|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS )|8 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

If |cos x|^(sin^(2)x-(3)/(2)sin x+(1)/(2))=1 then x=

If (sin x + cos x)/(sin x - cos x) = (6)/(5) , then the value of (tan^(2) x + 1)/(tan^(2) x-1) is :

If sin(sin x+cos x)=cos(cos x-sin x) then the largest possible value of sin x, is

If sin x cos x = 1//2 , then what is the value of sin x - cos x ?

If 2cos x+sin x=1, then find the value of 7cos x+6sin x

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

("sin x - cos x")^(2) =1- sin 2x

Let 'a' denote the roots of equation cos(cos^(-1)x)+sin^(-1)sin((1+x^(2))/(2))=2sec^(-1)(sec x) then possible value of [|10a|] where [.] denotes the greatest integer function will be

ML KHANNA-TRIGONOMETRICAL EQUATIONS -PROBLEM SET (3) (MULTIPLE CHOICE QUESTIONS)
  1. The value of theta lying between theta = 0 and theta = pi/2 and satis...

    Text Solution

    |

  2. The number of all triplets (a1,a2,a3) such that a1 + a2 cos 2x + a3 si...

    Text Solution

    |

  3. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  4. The equation (cos p-1) x^(2) + cos p*x + sin p = 0 where x is a varia...

    Text Solution

    |

  5. If A,B,C the angles of a triangle be in A.P. and satisfy the relations...

    Text Solution

    |

  6. The number of solution(s) of 2cos^(2)(x/2)sin^(2)x=x^(2)+1/x^(2), 0 le...

    Text Solution

    |

  7. The solution of the equation e^(sinx) -e^(-sinx)-4 = 0 is :

    Text Solution

    |

  8. One value of theta which satisfies the equation sin^(4)theta-2sin^(2)t...

    Text Solution

    |

  9. The number of solutions of the equation sin^3x cos x + sin^2 x cos^2x ...

    Text Solution

    |

  10. The number of solutionsof the equation 1 +sin x sin^2 ""(x)/2 = 0 i...

    Text Solution

    |

  11. If 0le x le pi and 81^(sin^2 x) + 81^(cos^2x) = 30, then x is equal to

    Text Solution

    |

  12. If 3^(sin2x + 2cos^2x) + 3^(1-sin2x + 2sin^2x) = 28 , then the values ...

    Text Solution

    |

  13. Solve 2^(cos 2x)+1=3.2^(-sin^(2) x)

    Text Solution

    |

  14. The equation sin^(4) x + cos^(4) x + sin 2x + k = 0 must have real s...

    Text Solution

    |

  15. The equation sin^4 x - 2cos^2 x + a^2 = 0 is solveble if

    Text Solution

    |

  16. Solve: log(cosx) sin x + log(sin x) cos x = 2.

    Text Solution

    |

  17. If log(cosx)tan x + log(sinx) cot x = 0, then the most general value o...

    Text Solution

    |

  18. If abs(cos x)^(sin^2 x - 3/2 sin x + 1/2) = 1, then possible values ...

    Text Solution

    |

  19. Find all values of theta in the interva (-pi/2,pi/2) satisfying the eq...

    Text Solution

    |

  20. The value of x between 0 and2pi which satisfy the equation sinx.sqrt(8...

    Text Solution

    |