Home
Class 12
MATHS
The number of all possible values of the...

The number of all possible values of `theta`,where `0 lt thetalt pi` for which the system of equations
`(y + z) cos 3 theta = (xyz) sin 3 theta`
`x sin 3 theta = (2 cos 3 theta) /y + (2 sin 3 theta)/z`
and (xyz)`sin 3 theta = (y + 2z) cos 3theta +y sin 3theta` have a solution `(x_0,y_0,z_0)` with `y_0z_0ne0` is

A

3

B

2

C

1

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of possible values of \(\theta\) in the interval \(0 < \theta < \pi\) for which the given system of equations has a solution \((x_0, y_0, z_0)\) with \(y_0 z_0 \neq 0\). The equations are: 1. \((y + z) \cos 3\theta = (xyz) \sin 3\theta\) 2. \(x \sin 3\theta = \frac{2 \cos 3\theta}{y} + \frac{2 \sin 3\theta}{z}\) 3. \((xyz) \sin 3\theta = (y + 2z) \cos 3\theta + y \sin 3\theta\) ### Step 1: Analyze the first equation From the first equation, we can rearrange it as follows: \[ (y + z) \cos 3\theta - (xyz) \sin 3\theta = 0 \] This implies that either \(\cos 3\theta = 0\) or \((y + z) = (xyz) \tan 3\theta\). ### Step 2: Analyze the second equation Rearranging the second equation gives: \[ x \sin 3\theta - \frac{2 \cos 3\theta}{y} - \frac{2 \sin 3\theta}{z} = 0 \] Multiplying through by \(yz\) to eliminate the denominators: \[ xyz \sin 3\theta - 2z \cos 3\theta - 2y \sin 3\theta = 0 \] ### Step 3: Analyze the third equation From the third equation, we rearrange it as: \[ (xyz) \sin 3\theta - (y + 2z) \cos 3\theta - y \sin 3\theta = 0 \] This can be simplified to: \[ xyz \sin 3\theta - y \sin 3\theta - (y + 2z) \cos 3\theta = 0 \] ### Step 4: Equate the equations Now we have three equations. We can set them equal to each other: 1. From the first and second equations, we can equate the expressions involving \(\tan 3\theta\). 2. From the second and third equations, we can derive another relationship. ### Step 5: Solve for \(\tan 3\theta\) From the deductions, we find that: \[ \tan 3\theta = \frac{y + z}{xyz} \] And from the second equation, we can derive: \[ \tan 3\theta = \frac{2z \cos 3\theta + 2y \sin 3\theta}{x} \] ### Step 6: Find values of \(\theta\) Now, we need to find the values of \(\theta\) such that \(\tan 3\theta = 1\): \[ 3\theta = \frac{\pi}{4} + n\pi \] This gives: \[ \theta = \frac{\pi}{12} + \frac{n\pi}{3} \] ### Step 7: Determine valid \(n\) values We need \(0 < \theta < \pi\): 1. For \(n = 0\): \[ \theta = \frac{\pi}{12} \] 2. For \(n = 1\): \[ \theta = \frac{\pi}{12} + \frac{\pi}{3} = \frac{5\pi}{12} \] 3. For \(n = 2\): \[ \theta = \frac{\pi}{12} + \frac{2\pi}{3} = \frac{9\pi}{12} = \frac{3\pi}{4} \] 4. For \(n = 3\): \[ \theta = \frac{\pi}{12} + \pi = \frac{13\pi}{12} \quad (\text{not valid as } > \pi) \] ### Conclusion The valid values of \(\theta\) in the interval \(0 < \theta < \pi\) are: 1. \(\frac{\pi}{12}\) 2. \(\frac{5\pi}{12}\) 3. \(\frac{3\pi}{4}\) Thus, the number of all possible values of \(\theta\) is **3**.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES)|2 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos

Similar Questions

Explore conceptually related problems

The number of all possible values of theta, where 0

(sin ^ (3) theta + sin3 theta) / (sin theta) + (cos ^ (3) theta-cos3 theta) / (cos theta) =

x sin ^ (3) theta + y cos ^ (3) theta = sin theta cos theta and x sin theta = y cos theta Find the value of x ^ (2) + y ^ (2)

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta and x sin theta = y cos theta , then the value of x^(2) + y^(2) is :

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

Prove that: (sin theta - 2 sin^(3) theta) = (2cos^(3) theta - cos theta) tan theta .

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

If 0 lt theta lt pi and the system of equations (sin theta) x + y + z = 0 x + (cos theta) y + z = 0 (sin theta) x + (cos theta) y + z = 0 has a non-trivial solution, then theta =

The value of (sin theta - 2 sin^3 theta)/(2 cos^3 theta-cos theta) is

ML KHANNA-TRIGONOMETRICAL EQUATIONS -SELF ASSESSMENT TEST
  1. The maximum value of sin (x + x/6) + cos (x + pi/6) int eh interval (0...

    Text Solution

    |

  2. If x = X "cos" theta-Y "sin" theta, y = X "sin" theta + Y "cos" theta ...

    Text Solution

    |

  3. The general solution of the equation tan^2 x + 2 sqrt3 tan x = 1is giv...

    Text Solution

    |

  4. Let P= {theta : sin theta - cos theta = sqrt2 cos theta} and Q =...

    Text Solution

    |

  5. For 0 lt theta lt pi/2, the solutions of sigma(m-1)^(6)"cosec"(theta+(...

    Text Solution

    |

  6. The positive integer value of n gt 3 satisfying the equation (1)/(sin(...

    Text Solution

    |

  7. The number of all possible values of theta,where 0 lt thetalt pi for w...

    Text Solution

    |

  8. The number of values of theta in the interval (-(pi)/(2), (pi)/(2)) su...

    Text Solution

    |

  9. If sqrt3cos theta + sin theta = sqrt2 then general value of theta is

    Text Solution

    |

  10. The general solution of sinx-cosx=sqrt(2), for any integer n is

    Text Solution

    |

  11. If tan2theta =1, then the general value of theta is

    Text Solution

    |

  12. The equation a "cos" x - "cos" 2x = 2a-7 passesses a solution if

    Text Solution

    |

  13. General value of theta obtained from the equation cos 2 theta = sin al...

    Text Solution

    |

  14. If sin 6 theta + sin 4 theta + sin 2 theta = 0 Then the general valu...

    Text Solution

    |

  15. General solution of tan 5 theta =

    Text Solution

    |

  16. The equation sinx cosx=2 has:

    Text Solution

    |

  17. The value of theta lying between 0 and pi/2 and satisfying the equati...

    Text Solution

    |

  18. The number of values of x in the interval [0, 5pi] satisfying the equa...

    Text Solution

    |

  19. Find the most general value of theta satisfyingn the equation tanthet...

    Text Solution

    |

  20. The smallest positive angle which satisfies the equation 2sin^2theta+s...

    Text Solution

    |