Home
Class 12
MATHS
The domain of the function f(x)=sin^(-1)...

The domain of the function `f(x)=sin^(-1)log_(3)(x/3))` is

A

`[1,9]`

B

`[-1,9]`

C

`[-9,1]`

D

`[-9,-1]`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (4) |43 Videos
  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=cos^(-1)[log_(2)(x/2)] is

The domain of the function sin^(-1)(log_(2)((x)/(3))) is-

Knowledge Check

  • The domain of the function f(x)=sqrt(sin^(-1)(log_(2)x)) is

    A
    `(1,2)`
    B
    `[1,2)`
    C
    `(1,2]`
    D
    none
  • The domain of the function f(x) =1/(3-log_(3)(x-3)) is

    A
    `(-infty, 30)`
    B
    `(-infty, 30) cup (30, infty)`
    C
    `(3,30) cup (30,infty)`
    D
    `(4, infty)`
  • The domain of the function f(x) = sqrt(sin^(-1)(log_(10)x)) is

    A
    (1,2)
    B
    [1,]
    C
    (1,2)
    D
    [1,2)
  • Similar Questions

    Explore conceptually related problems

    The domain of the function f(x)=sin^(-1){log_(2)(x^(2))/(2)} is given by _(-)

    The domain of the function f(x)=x^((1)/(log_(10)x)) is

    The domain of the function f(x)=x^((1)/(log_(10)x)) is

    The number of integers in the domain of the function f(x)=sin^(-1)(log_(2)((x^(2))/(2)))

    Find the domain of the function : f(x)=sin^(-1)(log_(2)x)