Home
Class 12
MATHS
The domain off (x) = sqrt""(cos(sin x)] ...

The domain off (x) = `sqrt""(cos(sin x)] + sin^(-1) ((x^2 +1)/( 2x)) =`

A

`R- {1}`

B

`{-1,1}`

C

`(1,oo)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{\cos(\sin x)} + \sin^{-1}\left(\frac{x^2 + 1}{2x}\right) \), we need to ensure that both parts of the function are defined. ### Step 1: Analyze the square root part \( \sqrt{\cos(\sin x)} \) 1. The expression inside the square root, \( \cos(\sin x) \), must be non-negative: \[ \cos(\sin x) \geq 0 \] 2. The cosine function is non-negative when its argument is in the range: \[ \sin x \in [0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, 2\pi] \] However, since \( \sin x \) oscillates between -1 and 1, we can find the values of \( x \) that yield \( \sin x \) in this range. ### Step 2: Determine the values of \( x \) for \( \cos(\sin x) \geq 0 \) 1. The cosine function is non-negative for angles in the first and fourth quadrants. Thus, we need: \[ \sin x \in [0, 1] \] This occurs when: - \( x = n\pi + (-1)^n \frac{\pi}{2} \) for integers \( n \). ### Step 3: Analyze the inverse sine part \( \sin^{-1}\left(\frac{x^2 + 1}{2x}\right) \) 1. The argument of the inverse sine function must be in the range \([-1, 1]\): \[ -1 \leq \frac{x^2 + 1}{2x} \leq 1 \] ### Step 4: Solve the inequalities 1. **Upper Bound:** \[ \frac{x^2 + 1}{2x} \leq 1 \] This simplifies to: \[ x^2 + 1 \leq 2x \implies x^2 - 2x + 1 \leq 0 \implies (x - 1)^2 \leq 0 \] This implies: \[ x = 1 \] 2. **Lower Bound:** \[ -1 \leq \frac{x^2 + 1}{2x} \] This simplifies to: \[ -2x \leq x^2 + 1 \implies x^2 + 2x + 1 \geq 0 \implies (x + 1)^2 \geq 0 \] This is always true for all \( x \). ### Step 5: Combine the results From the analysis, we have: - The square root part is defined for \( x \) such that \( \sin x \) is in the range where \( \cos(\sin x) \geq 0 \). - The inverse sine part is defined for \( x = 1 \). Thus, the only value of \( x \) that satisfies both conditions is: \[ \text{Domain of } f(x) = \{1\} \] ### Final Answer The domain of the function \( f(x) \) is \( \{1\} \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (4) |43 Videos
  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

find the domain and range of f(x)=sqrt(cos(sin x))+sin^(-1)((1+x^(2))/(2x))

The domain of f(x)=sqrt(sin(cos x))+(1)/(x-1)+(sin^(-1))(x^(2)+1)/(2x)

Find the domain of f(x)=sqrt(cos^(-1)x-sin^(-1)x)

Find the domain of f(x)=sqrt(cos^(-1)x-sin^(-1)x)

Find the domain of the following functions: (i) f(x) = (1)/(sqrt(|x| -x)) (ii) f(x) = sqrt(cos (sin x)) + sin^(-1) ((1 + x^(2))/(2x)) (iii) (1)/(log_(10) (1-x)) + sqrt(x + 2)

The domain of sin^(-1)2x is

The function f(x)=sqrt(cos(sin x))+sin^(-1)((1+x^(2))/(2x)) is defined for:

ML KHANNA-FUNCTIONS-PROBLEM SET (3)
  1. The domain of definition of the function f(x)=sin^(-1)((4)/(3+2 cos x)...

    Text Solution

    |

  2. The domain of the function f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2))), is

    Text Solution

    |

  3. The domain off (x) = sqrt""(cos(sin x)] + sin^(-1) ((x^2 +1)/( 2x)) ...

    Text Solution

    |

  4. If f(x) = sqrt ""[ cos ( sin x) ] + sin^(-1) ((x^2 +1)/(2x)) + (...

    Text Solution

    |

  5. If f(x)=cos^(-1)((2-|x|)/(4))+[log(10)(3-x)]^(-1), then its domain is

    Text Solution

    |

  6. If y =sin^(-1) [(x-1)/(x+1)] +log (2-x), then its domain is :

    Text Solution

    |

  7. The domain of definition of the function, f (x) = (1 - 3x)^(1//3) + 3 ...

    Text Solution

    |

  8. The function f (x) =cot^(-1) (sqrt((x+3) x)) + cos^(-1) (sqrt(x^2 +3x...

    Text Solution

    |

  9. The function f (x) =( sec^(-1) x)/( sqrt(x-[x])) where [x] denotes the...

    Text Solution

    |

  10. If y= 2^(-x) + cos^(-1) (x/2 -1) + log sqrt(x-[x]) , then its d...

    Text Solution

    |

  11. If y= (sqrt(x^2 -4))/(cos^(-1) (2-x)) then the domain of y is

    Text Solution

    |

  12. The domain of the function f (x)=–(sqrt(4-x^2))/(sin^(-1) (2-x)) is

    Text Solution

    |

  13. The domain of definition of the function f (x) = sin^(-1) ((x-3)//(...

    Text Solution

    |

  14. The domain of the function f(x) = sqrt(3-2^x -2^(1-x) ) + sqrt(...

    Text Solution

    |

  15. sqrt( sin^(-1) ( log2 x ) exists for

    Text Solution

    |

  16. The natural domain of, sqrt(sin^(-1) (2x) + (pi)/(6) ) for all x in ...

    Text Solution

    |

  17. The domain of definition of the function y (x) given by the equation 2...

    Text Solution

    |

  18. Domain of cos^(-1) [2x^2 - 3], where [**] denotes the greatest integ...

    Text Solution

    |

  19. The domain of the function f (x) = sqrt""(2-2x-x^2) is

    Text Solution

    |

  20. f(x) = sqrt([((x + 1) (x-3))/((x-2))] is a real valued function in the...

    Text Solution

    |