Home
Class 12
MATHS
The function f (x) =cot^(-1) (sqrt((x+3...

The function `f (x) =cot^(-1) (sqrt((x+3) x)) + cos^(-1) (sqrt(x^2 +3x+1))` is defined for x equal to

A

0

B

-3

C

`{0,-3}`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \cot^{-1}(\sqrt{(x+3)x}) + \cos^{-1}(\sqrt{x^2 + 3x + 1}) \), we need to analyze the conditions under which each component of the function is defined. ### Step 1: Analyze the first term \( \cot^{-1}(\sqrt{(x+3)x}) \) 1. The expression inside the square root, \( (x+3)x \), must be non-negative: \[ (x+3)x \geq 0 \] This can be factored as: \[ x(x + 3) \geq 0 \] 2. To find the roots, we set \( x(x + 3) = 0 \): - The roots are \( x = 0 \) and \( x = -3 \). 3. We analyze the sign of \( x(x + 3) \) in the intervals determined by the roots: - For \( x < -3 \): both factors are negative, so the product is positive. - For \( -3 < x < 0 \): the first factor is negative and the second is positive, so the product is negative. - For \( x > 0 \): both factors are positive, so the product is positive. 4. Thus, the intervals where \( (x+3)x \geq 0 \) are: \[ (-\infty, -3] \cup [0, \infty) \] ### Step 2: Analyze the second term \( \cos^{-1}(\sqrt{x^2 + 3x + 1}) \) 1. The expression inside the square root, \( x^2 + 3x + 1 \), must be non-negative: \[ x^2 + 3x + 1 \geq 0 \] 2. To find the roots, we use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-3 \pm \sqrt{5}}{2} \] Let \( r_1 = \frac{-3 - \sqrt{5}}{2} \) and \( r_2 = \frac{-3 + \sqrt{5}}{2} \). 3. The quadratic opens upwards (since the coefficient of \( x^2 \) is positive), so it is non-negative outside the roots: \[ (-\infty, r_1] \cup [r_2, \infty) \] 4. Additionally, since we are dealing with \( \cos^{-1} \), the value inside the square root must also be less than or equal to 1: \[ 0 \leq \sqrt{x^2 + 3x + 1} \leq 1 \] Squaring gives: \[ 0 \leq x^2 + 3x + 1 \leq 1 \] This leads to two inequalities: - \( x^2 + 3x + 1 \geq 0 \) (already solved). - \( x^2 + 3x \leq 0 \) simplifies to \( x(x + 3) \leq 0 \), which gives: \[ [-3, 0] \] ### Step 3: Combine the domains 1. From the first term, we have: \[ (-\infty, -3] \cup [0, \infty) \] 2. From the second term, we have: \[ [-3, 0] \] 3. The intersection of these two domains is: \[ [-3, 0] \] ### Final Domain Thus, the domain of the function \( f(x) \) is: \[ \boxed{[-3, 0]} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (4) |43 Videos
  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

The function f(x) = cot^(-1) sqrt(x(x+3)) + cos^(-1) sqrt(x^(2) + 3x +1) is defined on the set S, where S is equal to

Find the real values of x for which the function f(x) = cos^(-1) sqrt(x^(2) + 3 x + 1) + cos^(-1) sqrt(x^(2) + 3x) is defined

The function f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^(2)+3x+1) is defined on the set S , where S is equal to

The function f(x)=cos(log(x+sqrt(x^(2)+1))) is :

The function f (x) =1+ x ln (x+ sqrt(1+ x ^(2)))-sqrt(1- x^(2)) is:

The range of the function f(x)=(1)/(sqrt(4+3cos x)) is

Domain of the function f(x) = sqrt(3-x) + cos^(-1)((3-2x))/5 is

The domain of the function f(x) = sqrt(-log_(0.3)(x-1))/sqrt(x^2 + 2x + 8) is

The function f(x)=sqrt(cos(sin x))+sin^(-1)((1+x^(2))/(2x)) is defined for:

The derivative of the function f(x)=cos^(-1)((1)/(sqrt(13))(2cos x-3sin x))+sin^(-1)((1)/(sqrt(13))(2cos x+3sin x)), with respect to sqrt(1+x^(2)) at x=(3)/(4) is

ML KHANNA-FUNCTIONS-PROBLEM SET (3)
  1. If y =sin^(-1) [(x-1)/(x+1)] +log (2-x), then its domain is :

    Text Solution

    |

  2. The domain of definition of the function, f (x) = (1 - 3x)^(1//3) + 3 ...

    Text Solution

    |

  3. The function f (x) =cot^(-1) (sqrt((x+3) x)) + cos^(-1) (sqrt(x^2 +3x...

    Text Solution

    |

  4. The function f (x) =( sec^(-1) x)/( sqrt(x-[x])) where [x] denotes the...

    Text Solution

    |

  5. If y= 2^(-x) + cos^(-1) (x/2 -1) + log sqrt(x-[x]) , then its d...

    Text Solution

    |

  6. If y= (sqrt(x^2 -4))/(cos^(-1) (2-x)) then the domain of y is

    Text Solution

    |

  7. The domain of the function f (x)=–(sqrt(4-x^2))/(sin^(-1) (2-x)) is

    Text Solution

    |

  8. The domain of definition of the function f (x) = sin^(-1) ((x-3)//(...

    Text Solution

    |

  9. The domain of the function f(x) = sqrt(3-2^x -2^(1-x) ) + sqrt(...

    Text Solution

    |

  10. sqrt( sin^(-1) ( log2 x ) exists for

    Text Solution

    |

  11. The natural domain of, sqrt(sin^(-1) (2x) + (pi)/(6) ) for all x in ...

    Text Solution

    |

  12. The domain of definition of the function y (x) given by the equation 2...

    Text Solution

    |

  13. Domain of cos^(-1) [2x^2 - 3], where [**] denotes the greatest integ...

    Text Solution

    |

  14. The domain of the function f (x) = sqrt""(2-2x-x^2) is

    Text Solution

    |

  15. f(x) = sqrt([((x + 1) (x-3))/((x-2))] is a real valued function in the...

    Text Solution

    |

  16. The domain of the function sqrt(x^2 - 5x +6 ) + sqrt(2x + 8- x^2) ...

    Text Solution

    |

  17. The domain of the real valued function sqrt((x+2) (5-x) ) - (1)/( s...

    Text Solution

    |

  18. The domain of definition of f(x) = sqrt((1-|x|)/(2-|x|)) is

    Text Solution

    |

  19. The domain of definition of the function f(x)=(1)/(sqrt(|x|-x)) is

    Text Solution

    |

  20. Given f (x) =(1)/( sqrt"" (|x| -x)) , g (x) = (1)/( sqrt""(x-|x|)) t...

    Text Solution

    |