Home
Class 12
MATHS
If y= (sqrt(x^2 -4))/(cos^(-1) (2-x)) ...

If ` y= (sqrt(x^2 -4))/(cos^(-1) (2-x))` then the domain of y is

A

`[2,4]`

B

`[1,2]`

C

`[2,3]`

D

`[-2,2]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( y = \frac{\sqrt{x^2 - 4}}{\cos^{-1}(2 - x)} \), we need to ensure that both the numerator and the denominator are defined and valid. ### Step 1: Analyze the numerator \( \sqrt{x^2 - 4} \) For the square root to be defined, the expression inside the square root must be non-negative: \[ x^2 - 4 \geq 0 \] This can be rearranged to: \[ x^2 \geq 4 \] Taking the square root of both sides gives us: \[ |x| \geq 2 \] This means: \[ x \leq -2 \quad \text{or} \quad x \geq 2 \] ### Step 2: Analyze the denominator \( \cos^{-1}(2 - x) \) The function \( \cos^{-1}(x) \) is defined for \( x \) in the interval \([-1, 1]\). Therefore, we need: \[ -1 \leq 2 - x \leq 1 \] This can be split into two inequalities: 1. \( 2 - x \geq -1 \) 2. \( 2 - x \leq 1 \) #### Solving the first inequality: \[ 2 - x \geq -1 \implies x \leq 3 \] #### Solving the second inequality: \[ 2 - x \leq 1 \implies x \geq 1 \] ### Step 3: Combine the results Now we have two conditions: 1. From the numerator: \( x \leq -2 \) or \( x \geq 2 \) 2. From the denominator: \( 1 \leq x \leq 3 \) Now, we need to find the intersection of these conditions: - The interval \( x \geq 2 \) intersects with \( 1 \leq x \leq 3 \) to give \( 2 \leq x \leq 3 \). - The interval \( x \leq -2 \) does not intersect with \( 1 \leq x \leq 3 \). ### Final Domain Thus, the domain of \( y \) is: \[ \text{Domain of } y = [2, 3] \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (4) |43 Videos
  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

What is the domain of y=sqrt(x)+2 ?

y=sqrt(x^(2)-3x+2)+(1)/(sqrt(3+2x-x^(2))) find the domain =?

If y=2^(-x)+cos^(-1)((x)/(2)-1)+log sqrt(x-[x]), then its domain is given by

If y=(sin^(-1)x cos^(-1)((x^2)/2))/(1+x^2) then find the value of y(1/2) + y(1/sqrt2) + y(-1/2) + y(-1/sqrt2)

y=(sqrt(3x-7))/(sqrt(x+1)-2), Find domain

Find the domain of y=cos^-1{x[x[}

If 2^(sin x+cos y)=1 and 16^(sin^(2)x+cos^(2)y)=4 , then find the value of sin x and cos y

ML KHANNA-FUNCTIONS-PROBLEM SET (3)
  1. The function f (x) =( sec^(-1) x)/( sqrt(x-[x])) where [x] denotes the...

    Text Solution

    |

  2. If y= 2^(-x) + cos^(-1) (x/2 -1) + log sqrt(x-[x]) , then its d...

    Text Solution

    |

  3. If y= (sqrt(x^2 -4))/(cos^(-1) (2-x)) then the domain of y is

    Text Solution

    |

  4. The domain of the function f (x)=–(sqrt(4-x^2))/(sin^(-1) (2-x)) is

    Text Solution

    |

  5. The domain of definition of the function f (x) = sin^(-1) ((x-3)//(...

    Text Solution

    |

  6. The domain of the function f(x) = sqrt(3-2^x -2^(1-x) ) + sqrt(...

    Text Solution

    |

  7. sqrt( sin^(-1) ( log2 x ) exists for

    Text Solution

    |

  8. The natural domain of, sqrt(sin^(-1) (2x) + (pi)/(6) ) for all x in ...

    Text Solution

    |

  9. The domain of definition of the function y (x) given by the equation 2...

    Text Solution

    |

  10. Domain of cos^(-1) [2x^2 - 3], where [**] denotes the greatest integ...

    Text Solution

    |

  11. The domain of the function f (x) = sqrt""(2-2x-x^2) is

    Text Solution

    |

  12. f(x) = sqrt([((x + 1) (x-3))/((x-2))] is a real valued function in the...

    Text Solution

    |

  13. The domain of the function sqrt(x^2 - 5x +6 ) + sqrt(2x + 8- x^2) ...

    Text Solution

    |

  14. The domain of the real valued function sqrt((x+2) (5-x) ) - (1)/( s...

    Text Solution

    |

  15. The domain of definition of f(x) = sqrt((1-|x|)/(2-|x|)) is

    Text Solution

    |

  16. The domain of definition of the function f(x)=(1)/(sqrt(|x|-x)) is

    Text Solution

    |

  17. Given f (x) =(1)/( sqrt"" (|x| -x)) , g (x) = (1)/( sqrt""(x-|x|)) t...

    Text Solution

    |

  18. The domain of the function f (x) =sqrt(x- sqrt(1-x^2)) is

    Text Solution

    |

  19. The domain of the function sqrt(x^2 - [x]^2), where [x] has the usual ...

    Text Solution

    |

  20. The domain of the function f(x)=root(6)(4^(x)+8^(2//3(x-2))-52-2^(2(...

    Text Solution

    |