Home
Class 12
MATHS
The natural domain of, sqrt(sin^(-1) (2...

The natural domain of, `sqrt(sin^(-1) (2x) + (pi)/(6) )` for all `x in R `, is

A

`[-1/4 , 1/2]`

B

`[-1/4 ,1/4]`

C

`[-1/2 ,1/2]`

D

`[-1/2 ,1/4]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the natural domain of the function \( f(x) = \sqrt{\sin^{-1}(2x) + \frac{\pi}{6}} \), we need to ensure that the expression inside the square root is non-negative. This means we need to satisfy the following condition: \[ \sin^{-1}(2x) + \frac{\pi}{6} \geq 0 \] ### Step 1: Isolate the inverse sine function We start by isolating the inverse sine function: \[ \sin^{-1}(2x) \geq -\frac{\pi}{6} \] ### Step 2: Determine the range of the inverse sine function The function \( \sin^{-1}(y) \) is defined for \( y \) in the interval \([-1, 1]\). Therefore, we need to ensure that \( 2x \) falls within this range: \[ -1 \leq 2x \leq 1 \] ### Step 3: Solve for \( x \) Now, we solve the inequalities for \( x \): 1. From \( 2x \geq -1 \): \[ x \geq -\frac{1}{2} \] 2. From \( 2x \leq 1 \): \[ x \leq \frac{1}{2} \] ### Step 4: Combine the results Combining these two results, we find: \[ -\frac{1}{2} \leq x \leq \frac{1}{2} \] ### Step 5: Verify the condition for the square root Next, we need to check if the condition \( \sin^{-1}(2x) + \frac{\pi}{6} \geq 0 \) holds within this interval. The minimum value of \( \sin^{-1}(2x) \) occurs at \( x = -\frac{1}{2} \): \[ \sin^{-1}(2(-\frac{1}{2})) = \sin^{-1}(-1) = -\frac{\pi}{2} \] Thus, \[ -\frac{\pi}{2} + \frac{\pi}{6} = -\frac{3\pi}{6} + \frac{\pi}{6} = -\frac{2\pi}{6} = -\frac{\pi}{3} < 0 \] The maximum value occurs at \( x = \frac{1}{2} \): \[ \sin^{-1}(2(\frac{1}{2})) = \sin^{-1}(1) = \frac{\pi}{2} \] Thus, \[ \frac{\pi}{2} + \frac{\pi}{6} = \frac{3\pi}{6} + \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} > 0 \] ### Conclusion The function \( f(x) \) is defined for \( x \) in the interval \([-0.5, 0.5]\) where the expression under the square root is non-negative. Thus, the natural domain of the function is: \[ \boxed{[-\frac{1}{2}, \frac{1}{2}]} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (4) |43 Videos
  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

The natural domain of the function f(x)=sqrt(sin^(-1)(2x)+(pi)/(3)) is

The domain of f(x) = sqrt(pi/2 - sin^(-1) (x+|x|)/3) is

Let f(x)=sin[(pi)/(6)sin((pi)/(2)sin x)] for all x in R

Domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real valued of x, is

Find the domain of y=sqrt(sin x)+sqrt(16-x^(2))

The domain of the function f(x)= sqrt(sin^(-1)x-(pi)/(4))+log(1-x) is :

The domain of the function f(x)=sqrt(sin^(-1)(log_(2)x)) is

The domain of the function given by f(x)=sqrt(sin^(-1)(2x)+pi/6) is

Let f be a real vlaued fuction with domain R such that f(x+1)+f(x-1)=sqrt(2)f(x) for all x in R , then ,

ML KHANNA-FUNCTIONS-PROBLEM SET (3)
  1. The domain of the function f(x) = sqrt(3-2^x -2^(1-x) ) + sqrt(...

    Text Solution

    |

  2. sqrt( sin^(-1) ( log2 x ) exists for

    Text Solution

    |

  3. The natural domain of, sqrt(sin^(-1) (2x) + (pi)/(6) ) for all x in ...

    Text Solution

    |

  4. The domain of definition of the function y (x) given by the equation 2...

    Text Solution

    |

  5. Domain of cos^(-1) [2x^2 - 3], where [**] denotes the greatest integ...

    Text Solution

    |

  6. The domain of the function f (x) = sqrt""(2-2x-x^2) is

    Text Solution

    |

  7. f(x) = sqrt([((x + 1) (x-3))/((x-2))] is a real valued function in the...

    Text Solution

    |

  8. The domain of the function sqrt(x^2 - 5x +6 ) + sqrt(2x + 8- x^2) ...

    Text Solution

    |

  9. The domain of the real valued function sqrt((x+2) (5-x) ) - (1)/( s...

    Text Solution

    |

  10. The domain of definition of f(x) = sqrt((1-|x|)/(2-|x|)) is

    Text Solution

    |

  11. The domain of definition of the function f(x)=(1)/(sqrt(|x|-x)) is

    Text Solution

    |

  12. Given f (x) =(1)/( sqrt"" (|x| -x)) , g (x) = (1)/( sqrt""(x-|x|)) t...

    Text Solution

    |

  13. The domain of the function f (x) =sqrt(x- sqrt(1-x^2)) is

    Text Solution

    |

  14. The domain of the function sqrt(x^2 - [x]^2), where [x] has the usual ...

    Text Solution

    |

  15. The domain of the function f(x)=root(6)(4^(x)+8^(2//3(x-2))-52-2^(2(...

    Text Solution

    |

  16. The domain of the derivative of the function "JPNMLKOBJMATV02C25E030...

    Text Solution

    |

  17. The domain of definition of log4 log5 log3 (18 x -x^2 - 77) is ...

    Text Solution

    |

  18. The domain of the function log(10) log(10) (1 + x^3) is

    Text Solution

    |

  19. The domain of the function y = f (x)=(1)/(log (10) (1-x))+sqrt(x +2) i...

    Text Solution

    |

  20. Domain of definition of the functioni f(x)=3/(4-x^(2))+log(10)(x^(3)-x...

    Text Solution

    |