Home
Class 12
MATHS
Domain of cos^(-1) [2x^2 - 3], where [...

Domain of `cos^(-1) [2x^2 - 3]`, where [`**`] denotes the greatest integer function, is equal to

A

`[ 1, sqrt(5/2)]`

B

` [-sqrt(5/2),-1]`

C

`(-sqrt(5/2),-1] uu [1,sqrt(5/2))`

D

`[- sqrt(5/2) ,-1] uu [1,5 sqrt(1/2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \cos^{-1} \left[ 2x^2 - 3 \right] \), where \([ \cdot ]\) denotes the greatest integer function, we need to ensure that the expression inside the inverse cosine function is within the valid range for the cosine inverse function. ### Step-by-Step Solution: 1. **Understanding the Range of \( \cos^{-1}(y) \)**: The function \( \cos^{-1}(y) \) is defined for \( y \) in the range \([-1, 1]\). Therefore, we need to ensure: \[ -1 \leq [2x^2 - 3] \leq 1 \] 2. **Breaking Down the Inequalities**: We can break this down into two separate inequalities: - \( [2x^2 - 3] \geq -1 \) - \( [2x^2 - 3] \leq 1 \) 3. **Solving the First Inequality**: The greatest integer function \( [y] \) gives the largest integer less than or equal to \( y \). Thus, the first inequality \( [2x^2 - 3] \geq -1 \) implies: \[ 2x^2 - 3 \geq -1 \implies 2x^2 \geq 2 \implies x^2 \geq 1 \implies |x| \geq 1 \] This gives us two intervals: \[ x \leq -1 \quad \text{or} \quad x \geq 1 \] 4. **Solving the Second Inequality**: The second inequality \( [2x^2 - 3] \leq 1 \) implies: \[ 2x^2 - 3 < 2 \implies 2x^2 < 5 \implies x^2 < \frac{5}{2} \implies |x| < \sqrt{\frac{5}{2}} \approx 1.58 \] This gives us the interval: \[ -\sqrt{\frac{5}{2}} < x < \sqrt{\frac{5}{2}} \] 5. **Combining the Intervals**: Now, we need to combine the results from both inequalities: - From \( |x| \geq 1 \): \( (-\infty, -1] \cup [1, \infty) \) - From \( |x| < \sqrt{\frac{5}{2}} \): \( (-\sqrt{\frac{5}{2}}, \sqrt{\frac{5}{2}}) \) The valid \( x \) values must satisfy both conditions. Thus, we take the intersection: - For \( x \leq -1 \), the interval is \( (-\sqrt{\frac{5}{2}}, -1] \). - For \( x \geq 1 \), the interval is \( [1, \sqrt{\frac{5}{2}}) \). 6. **Final Domain**: Therefore, the domain of the function \( f(x) = \cos^{-1} \left[ 2x^2 - 3 \right] \) is: \[ \left( -\sqrt{\frac{5}{2}}, -1 \right] \cup [1, \sqrt{\frac{5}{2}}) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (4) |43 Videos
  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

Domain of cos^(-1)[2x^(2)-3] where [ ] denotes greatest integer function, is

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(2)[x^(2)-x+1]dx (where,[*] denotes the greatest integer function) is equal to

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

Find the number of integral values of x in the domain of f(x) = cos^(-1) [2 - 4x^2] . (where [.] denotes greatest integer function)

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

ML KHANNA-FUNCTIONS-PROBLEM SET (3)
  1. The natural domain of, sqrt(sin^(-1) (2x) + (pi)/(6) ) for all x in ...

    Text Solution

    |

  2. The domain of definition of the function y (x) given by the equation 2...

    Text Solution

    |

  3. Domain of cos^(-1) [2x^2 - 3], where [**] denotes the greatest integ...

    Text Solution

    |

  4. The domain of the function f (x) = sqrt""(2-2x-x^2) is

    Text Solution

    |

  5. f(x) = sqrt([((x + 1) (x-3))/((x-2))] is a real valued function in the...

    Text Solution

    |

  6. The domain of the function sqrt(x^2 - 5x +6 ) + sqrt(2x + 8- x^2) ...

    Text Solution

    |

  7. The domain of the real valued function sqrt((x+2) (5-x) ) - (1)/( s...

    Text Solution

    |

  8. The domain of definition of f(x) = sqrt((1-|x|)/(2-|x|)) is

    Text Solution

    |

  9. The domain of definition of the function f(x)=(1)/(sqrt(|x|-x)) is

    Text Solution

    |

  10. Given f (x) =(1)/( sqrt"" (|x| -x)) , g (x) = (1)/( sqrt""(x-|x|)) t...

    Text Solution

    |

  11. The domain of the function f (x) =sqrt(x- sqrt(1-x^2)) is

    Text Solution

    |

  12. The domain of the function sqrt(x^2 - [x]^2), where [x] has the usual ...

    Text Solution

    |

  13. The domain of the function f(x)=root(6)(4^(x)+8^(2//3(x-2))-52-2^(2(...

    Text Solution

    |

  14. The domain of the derivative of the function "JPNMLKOBJMATV02C25E030...

    Text Solution

    |

  15. The domain of definition of log4 log5 log3 (18 x -x^2 - 77) is ...

    Text Solution

    |

  16. The domain of the function log(10) log(10) (1 + x^3) is

    Text Solution

    |

  17. The domain of the function y = f (x)=(1)/(log (10) (1-x))+sqrt(x +2) i...

    Text Solution

    |

  18. Domain of definition of the functioni f(x)=3/(4-x^(2))+log(10)(x^(3)-x...

    Text Solution

    |

  19. The domain of f(x)=(log(2)(x+3))/(x^(2)+3x+2) is

    Text Solution

    |

  20. The domain of the function f(x) = sqrt({(-log (0.3) (x-1))/(-x^2+ 3x ...

    Text Solution

    |