Home
Class 12
MATHS
The domain of the function f (x) = sqrt"...

The domain of the function` f (x) = sqrt""(2-2x-x^2)` is

A

`-3 le x le sqrt""3`

B

` -1-sqrt"" 3 le x le -1 + sqrt""3`

C

`-2 le x lt 2 `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{2 - 2x - x^2} \), we need to ensure that the expression inside the square root is non-negative. This leads us to the inequality: \[ 2 - 2x - x^2 \geq 0 \] ### Step 1: Rearranging the Inequality First, we can rearrange the inequality: \[ -x^2 - 2x + 2 \geq 0 \] Multiplying the entire inequality by -1 (which flips the inequality sign) gives: \[ x^2 + 2x - 2 \leq 0 \] ### Step 2: Finding the Roots Next, we need to find the roots of the quadratic equation \( x^2 + 2x - 2 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = 2, c = -2 \): \[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} \] \[ x = \frac{-2 \pm \sqrt{4 + 8}}{2} \] \[ x = \frac{-2 \pm \sqrt{12}}{2} \] \[ x = \frac{-2 \pm 2\sqrt{3}}{2} \] \[ x = -1 \pm \sqrt{3} \] Thus, the roots are: \[ x_1 = -1 - \sqrt{3}, \quad x_2 = -1 + \sqrt{3} \] ### Step 3: Testing Intervals Now we need to test the intervals determined by the roots \( x_1 \) and \( x_2 \): 1. **Interval 1:** \( (-\infty, -1 - \sqrt{3}) \) 2. **Interval 2:** \( (-1 - \sqrt{3}, -1 + \sqrt{3}) \) 3. **Interval 3:** \( (-1 + \sqrt{3}, \infty) \) We will test a point from each interval to determine where the inequality \( x^2 + 2x - 2 \leq 0 \) holds. - **For Interval 1:** Choose \( x = -5 \) \[ (-5)^2 + 2(-5) - 2 = 25 - 10 - 2 = 13 \quad (\text{positive}) \] - **For Interval 2:** Choose \( x = 0 \) \[ (0)^2 + 2(0) - 2 = -2 \quad (\text{negative}) \] - **For Interval 3:** Choose \( x = 2 \) \[ (2)^2 + 2(2) - 2 = 4 + 4 - 2 = 6 \quad (\text{positive}) \] ### Step 4: Conclusion The inequality \( x^2 + 2x - 2 \leq 0 \) holds true in the interval: \[ [-1 - \sqrt{3}, -1 + \sqrt{3}] \] Thus, the domain of the function \( f(x) = \sqrt{2 - 2x - x^2} \) is: \[ \text{Domain: } [-1 - \sqrt{3}, -1 + \sqrt{3}] \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (4) |43 Videos
  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

" (i) The domain of the function "f(x)=sqrt(9-x^(2))" is: "

" (i) The domain of the function "f(x)=sqrt(9-x^(2))" is: "

The domain of the function f(x)=sqrt(x-sqrt(1-x^(2))) is

The domain of the function f(x)=sqrt(4x-x^2) is..............................

The domain of the function f(x)=sqrt(5|x|-x^2-6) is

The domain of the function f(x) = sqrt(2x-3) + sin x + sqrt(x+1) is

ML KHANNA-FUNCTIONS-PROBLEM SET (3)
  1. The domain of definition of the function y (x) given by the equation 2...

    Text Solution

    |

  2. Domain of cos^(-1) [2x^2 - 3], where [**] denotes the greatest integ...

    Text Solution

    |

  3. The domain of the function f (x) = sqrt""(2-2x-x^2) is

    Text Solution

    |

  4. f(x) = sqrt([((x + 1) (x-3))/((x-2))] is a real valued function in the...

    Text Solution

    |

  5. The domain of the function sqrt(x^2 - 5x +6 ) + sqrt(2x + 8- x^2) ...

    Text Solution

    |

  6. The domain of the real valued function sqrt((x+2) (5-x) ) - (1)/( s...

    Text Solution

    |

  7. The domain of definition of f(x) = sqrt((1-|x|)/(2-|x|)) is

    Text Solution

    |

  8. The domain of definition of the function f(x)=(1)/(sqrt(|x|-x)) is

    Text Solution

    |

  9. Given f (x) =(1)/( sqrt"" (|x| -x)) , g (x) = (1)/( sqrt""(x-|x|)) t...

    Text Solution

    |

  10. The domain of the function f (x) =sqrt(x- sqrt(1-x^2)) is

    Text Solution

    |

  11. The domain of the function sqrt(x^2 - [x]^2), where [x] has the usual ...

    Text Solution

    |

  12. The domain of the function f(x)=root(6)(4^(x)+8^(2//3(x-2))-52-2^(2(...

    Text Solution

    |

  13. The domain of the derivative of the function "JPNMLKOBJMATV02C25E030...

    Text Solution

    |

  14. The domain of definition of log4 log5 log3 (18 x -x^2 - 77) is ...

    Text Solution

    |

  15. The domain of the function log(10) log(10) (1 + x^3) is

    Text Solution

    |

  16. The domain of the function y = f (x)=(1)/(log (10) (1-x))+sqrt(x +2) i...

    Text Solution

    |

  17. Domain of definition of the functioni f(x)=3/(4-x^(2))+log(10)(x^(3)-x...

    Text Solution

    |

  18. The domain of f(x)=(log(2)(x+3))/(x^(2)+3x+2) is

    Text Solution

    |

  19. The domain of the function f(x) = sqrt({(-log (0.3) (x-1))/(-x^2+ 3x ...

    Text Solution

    |

  20. The domain of definition of the function f(x) = sin log {(sqrt""(4-x^2...

    Text Solution

    |